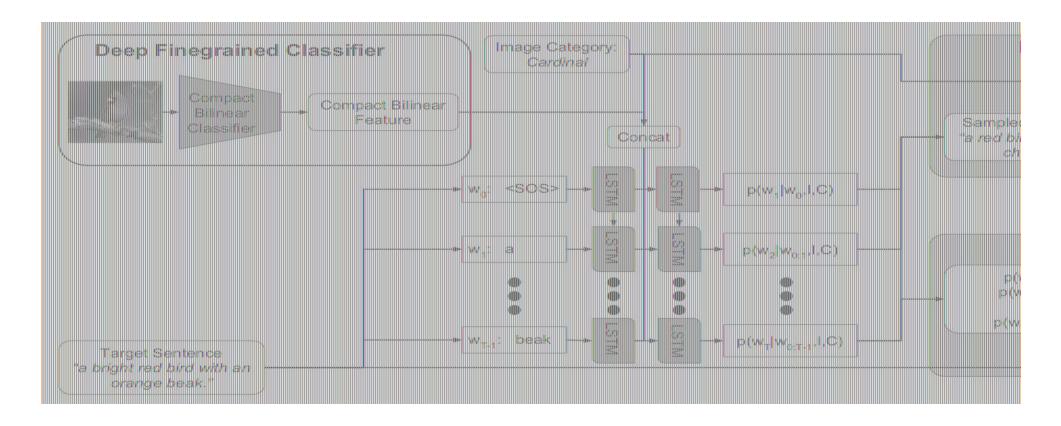
Interpretability of Deep Learning

What is interpretability?

Definition of interpretability is not strictly formalized, but there are two distinguishable views of this concept [1, 2, 8]:


- model transparency (as the opposite of black-box) understanding model internals
- justification of model predictions

Importance of the problem

- Better interpretability helps with testing NNs for unexpected behavior which is crucial for critical applications. (difficulties of testing are compounded by the vulnerability to adversarial examples [4]
 Although, techniques like in [3] can address issues of testing without improving interpretability)
- If used data falls under EU General Data Protection Regulation, data owner can use his "right to explanation" [5]
- Better interpretability allows to leverage human prior knowledge in case of selecting between different models, while a performance metric can be potentially misleading (as a result of overfitting or discrepancies between a chosen optimized metric and desired model properties) [8]

Generating Visual Explanations

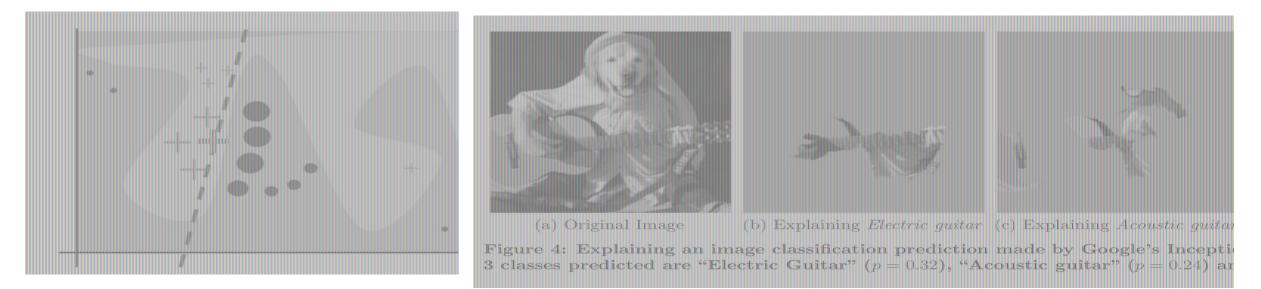
 Authors combined image recognition and image-captioning approaches and proposed a model for generating *visual explanations* which are both image-specific and classdiscriminative.

[6] L. A. Hendrics, Z. Akata, M. Rohrbach, J. Donahue, B. Schiele, T. Darell, "Generating Visual Explanations", in proc. of the European Conference on Computer Vision, 2016

Visualizing Recurrent Networks

- Character-level language model (CLM) predicts next character based on previous sequence
- Authors have trained different CLMs (LSTM, RNN, GRU) on English version of Leo Tolstoy's War and Peace novel and source code of the Linux Kernel to study RNN behavior
- Authors have identified multiple interpretable long-range LSTM cells

t cli d a a a t m b l b l b l b l b l b l b l b l b l b l	n e n a u t i r e n c n c n c n c n c	tteaacbek sr	s c n c h c e w c s c	er ed nd	e dngkroe e	poa tinior v	t nnttr, ir	pi iausso tw	o n t o m a s u h a	rt he ll g g a r c	ta // ly ly at in ar h	n e t , l h g m e i	c n h i e n	e d e e s n a d F t	m i c I T s	i y n r t h : s e			DrK Heyyh	i t ut t d a b a t		t b e z f s f i s i s	laoopkht s	y t l e e o v p e	p a a d a n k o r n k o r	r n W p t	ov d an wo pl e	et thut dut a	d h h e n cf		: h 9 2 n 1 2 d 3 4 3 3 3 5 3 5 3 5 5 5 5 5 5 5 5 5 5 5	0 13 0000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	al dn s s he s c i r i		a 9 - 54 - 20 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	c s m e r	y atraudao	3 3 8 3 3 8 2 8 9	04 w e X e w 4 o	
d : s	Y C o r i r o C	o u h t h n b k	r e e		a y p o		r 1 p 1	C O C I C I C O	c e V	i a s e	m n	p 1 n h 1) p i r o	(1. m W	1 1 n	У	r i	o u rec	p t	est 1 1		t h e d			re 1i		bri i hi) (1.) ()	n V	1911 1	e h M l	1118 1110	2 F		ı.	r i	lle	l d
	m :: ≥II	i 1 tha	e atı i c		ii us i	I stly n t	a a	n e cti	a va	n ate d e	t si	ins u	ni sic e	le u	e if	1 st	y ate	en	t	o nts			SMI																		
	f.	t f i	(s (f 1 f		9 9 1 1 5 (0) rr ig !({ e i c	n n s u t	e > t · m e r r	k t - > e m r e	n n b n	s oet	i t r	g i ()	n e fii ciu	i e J r J t	r r i) e f	n i	ti - e r					- f22 f22 f122	- - 													(31 ,)))		
	30	3				E		a,			1.11	c			n					ril 17						40 L															
) }				10																																					
	lar	ge U b	e p n u	orti pa f 1	ior 1 c F e	n o k	f c	ell a	-]	f i /	1	.t	t e	ea r	sil	y i fil	int 1	er.	pr 1 §	eta	abi s	le.	H	ere t r	e is i	s a n	ty g	piq t			IT D	63 (1	s e						170 171		


Several examples of cells with interpretable activations discovered in best Linux Kernel and War and Peace LSTMs. Text color corresponds to tanh(c), where -1 is red and +1 is blue.

[7] A. Karpathy, J. Johnson, Fei-Fei Li, "Visualizing and Understanding Recurrent Networks", CoRR, vol. abs/1506.02078, 2015

Also Karpathy did a talk on introduction to RNNs and results obtained in this paper <u>https://skillsmatter.com/skillscasts/6611-visualizing-and-understanding-recurrent-networks</u>

Local Interpretable Model-agnostic Explanations (LIME)

- Authors have proposed a method for justifying prediction of any classifier by finding an interpretable model (e.g. linear) over interpretable representation which is locally faithful
- Interpretable representation needs to be chosen for every task individually and can differ from features used for prediction (e.g. super-pixel for image classification or bag-of-words for text classification)

[8] M. T. Ribeiro, S. Singh, C. Guestrin "Why Should I Trust You?: Explaining the Predictions of Any Classifier", in proc. of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016

Summary

- Today most of the approaches focus on interpretability of predictions for supervised learning task, especially in the domain of computer vision
- Models for other tasks are still considered as black boxes

References

- [1] Z. C. Lipton "The Mythos of Model Interpretability", in proc. of the 2016 ICML Workshop on Human Interpretability in Machine Learning, New-York, NY, June 2016
- [2] Chakraborty, Supriyo, Tomsett, Richard, Raghavendra, Ramya, Harborne, Daniel, Alzantot, Moustafa, Cerutti, Federico, Srivastava, Mani, Preece, Alun David, Julier, Simon, Rao, Raghuveer M., Kelley, Troy D., Braines, David, Sensoy, Murat, Willis, Christopher J. and Gurram, Prudhvi, "Interpretability of deep learning models: a survey of results", IEEE Smart World Congress 2017 - Workshop on Distributed Analytics Infrastructure and Algorithms for Multi-Organization Federations, San Francisco, CA, USA, August 2017
- [3] K. Pei, Y Cao, J. Yang, S. Jana, "DeepXplore: Automated Whitebox Testing of Deep Learning Systems", in proc. of the 26th Symposium on Operating Systems Principles, pp. 1-18, Shanghai, China, October 2017
- [4] I. J. Goodfellow, J. Shlens, C. Szegedy, "Explaining and Harnessing Adversarial Examples", in proc. of 3rd International Conference on Learning Representations, San-Diego, CA, USA, May 2015
- [5] B. Goodman, S. Flaxman, "European Union regulations on algorithmic decision-making and a "right to explanation"", in proc. of the 2016 ICML Workshop on Human Interpretability in Machine Learning, New-York, NY, June 2016
- [6] L. A. Hendrics, Z. Akata, M. Rohrbach, J. Donahue, B. Schiele, T. Darell, "Generating Visual Explanations", in proc. of the European Conference on Computer Vision, pp. 3-19, Amsterdam, Netherlands, October 2016
- [7] A. Karpathy, J. Johnson, Fei-Fei Li, "Visualizing and Understanding Recurrent Networks", CoRR, vol. abs/1506.02078, 2015
- [8] M. T. Ribeiro, S. Singh, C. Guestrin "Why Should I Trust You?: Explaining the Predictions of Any Classifier", in proc. of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135-1144, San Francisco, CA, USA, August 2016
- [9] N. Tsopze, E. Mephu Nguifo, G. Tindo, "Towards a generalization of decompositional approach of rule extraction from multilayer artificial neural network", in proc. IJCNN 2011, pp. 1562-1569