Parameter Free Dynamic Time Warping

V.S. SIYOU FOTSO, E. Mephu Nguifo, P. Vaslin

Laboratoire d'Informatique, de Modelisation et d'Optimisation des Systemes Clermont Auvergne University

ROADEF- 22/02/2017

< ロ > < 同 > < 三 > < 三

Summary

2 Parameter Free Heuritic

- Background
- Free Dynamic Time Warping
- Experiments

Taking into account the temporal distortion

Figure: Euclidean distance (left) - DTW (right)

(UCA)

The dynamic time warping algorithm

Three constraints must be met to align two time series taking into account the time distortion

- The **boundary** condition: The first (respectively last) point of both time series must be aligned.
- The **monotony** condition: during alignment there is no return to a point which has already been used.
- The **continuity** condition: when aligning all data points are considered

The dynamic time warping algorithm Alignment example

Figure: Alignment example with DTW

• • • • • • • • • • • •

ROADEF2017

5 / 29

DTW's Problems

- Sensitivity to uncertainty
- Time consuming computation

Piecewice DTW to speed-up DTW

Piecewice aggregate the time series to reduce their lengthApplied DTW

Piecewice DTW to speed-up DTW

8 / 29

3

ROADEF2017

イロト イヨト イヨト イヨト

Piecewice DTW to speed-up DTW

How to choose the number of segments ?

Figure: Relation between Accuracy and the number of segment on FISH dataset

LIMOS

9 / 29

(日) (同) (三) (三)

ROADEF2017

Lignes directrices

Motivation

Parameter Free Heuritic

- Background
- Free Dynamic Time Warping
- Experiments

Iterative Deepening Dynamic Time Warping

Considers the number of segments which are powers of two

Lignes directrices

Motivation

Parameter Free Heuritic

- Background
- Free Dynamic Time Warping
- Experiments

FDTW: Definitions

Definition

 $X = x_1, \cdots, x_n$ is a sequence of numerical values representing the evolution of a specific quantity during the time. x_n is the most recent value.

Definition

A segment X_i of length l of the time series X of length n (l < n) is a sequence constituted by l consecutive variables of X starting at the position i and ending at the position i + l - 1. We have: $X_i = x_i, x_{i+1}, ..., x_{i+l-1}$

イロト イポト イヨト イヨト

ROADEF2017

Definition

The arithmetic average of the data points of a segment X_i of length I is noted \bar{X}_i and is defined by:

$$ar{X}_i = rac{1}{l} \sum_{j=0}^{l-1} x_{i+j}$$

FDTW: Definitions

Definition

Let T be the set of time series. The Piecewise Aggregate Approximation (PAA) is defined as follows:

 $PAA: T \times \mathbb{N}^* \to T$

$$(X, N) \mapsto \mathit{PAA}(X, N) = \left\{ egin{array}{c} ar{X}_1, \cdots, ar{X}_N \ \textit{if} \ N < |X| \\ X \ \textit{otherwise} \end{array}
ight.$$

Definition

Let $N \in \mathbb{N}^*$, X and Y be two time series.

PDTW(X, Y, N) = DTW(PAA(X, N), PAA(Y, N)).

15 / 29

(日) (同) (三) (三)

ROADEF2017

FDTW : Heuristic

1. We choose N_c candidates distributed in the space of possible values small, large, medium

If the length of time series is n = 12 and the number of candidates is $N_c = 4$, we are going to select the candidates 12, 9, 6, 3.

Example

1, 2, [3], 4, 5, [6], 7, 8, [9], 10, 11, [12]

(UCA)

FDTW: Heuristic

1. We choose N_c candidates distributed in the space of possible values small, large, medium

If the length of time series is n = 12 and the number of candidates is $N_c = 4$, we are going to select the candidates 12, 9, 6, 3.

Example

1, 2, [3], 4, 5, [6], 7, 8, [9], 10, 11, [12]

FDTW: Heuristic

2. We select the candidate that has the minimal classification error with 1NNPDTW

In our example, we may suppose that we get the minimal value with the candidate 6: it is thus the best candidate at this step.

Example

1, 2, 3, 4, 5, [6], 7, 8, 9, 10, 11, 12

(UCA)

FDTW: Heuristic

3. We respectively look between the predecessor and successor of the best candidate for a number of segments with a lower classification error. This number of segments corresponds to a local minimum.

In our example, we are going to test the values 4, 5, 7 and 8 to see if there is a local minimum.

Example 1, 2, **3**, **[4]**, **[5]**, **6**, **[7]**, **[8]**, **9**, 10, 11, 12

4. We loop

We restart at step one, while choosing differents candidates during each iteration to ensure that we return a good local minimum. We fix the number of iterations to $\lfloor log(n) \rfloor$.

Fact

In summary, in the worst case, we test the N_c first candidates to find the best one. Then, we test $\frac{2n}{N_c}$ other candidates to find the local minimum. We finally perform $nb(N_c) = N_c + \frac{2n}{N_c}$ tests. The minimal number of tests is done when the number of candidates $N_c = \sqrt{2n}$.

Corollary

For a given a dataset d_i FDTW $(d_i) \le 1$ NNDTW (d_i) . The quality of the alignment of our heuristic is better than that of DTW.

Proof.

 $1NNDTW(d_i) = 1NNPDTW(d_i, n)$. $1NNDTW(d_i)$ is then one of the candidate considered by the heurisitic *FDTW*. Since *FDTW* returns the minimal classification error from all candidates, the classification error of 1NNDTW is always greater than or equal to *FDTW*.

ROADEF2017

Corollary

For a given dataset d_i that has c_i classes, $c_i \in \mathbb{N}^*$, $acc_{DTW} \geq \frac{1}{c_i} \implies \frac{1}{c_i} \times acc_{max} \leq acc_{FDTW} \leq acc_{max}$

Lignes directrices

Motivation

Parameter Free Heuritic

- Background
- Free Dynamic Time Warping
- Experiments

Number of candidates tested

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

ROADEF2017

25 / 29

(UCA)

Pairwise comparison

Comparison of the classification error of FDTW in x-axis and IDDTW in y-axis. The points above the diagonal represent the datasets for which FDTW is better than IDDTW

26 / 29

Pairwise comparison

Comparison of the classification error of FDTW in x-axis and BF in y-axis. The points on the diagonal represent the datasets for which FDTW has found the optimal value

27 / 29

- FDTW allows to reduce the storage space and the processing time of time series classification without decreasing the alignment quality.
- Number of segments to be considered for symbolic representations of time series like SAX, ESAX, SAX-TD.

We thank the Ministry of Higher Education and Research for funding this work.

