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Taking into account the temporal distortion

Figure: Euclidean distance (left) - DTW (right)
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The dynamic time warping algorithm
Three constraints must be met to align two time series taking into account the time
distortion

The boundary condition: The first (respectively last) point of both
time series must be aligned.

The monotony condition: during alignment there is no return to a
point which has already been used.

The continuity condition: when aligning all data points are
considered
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The dynamic time warping algorithm
Alignment example

(a) (b)

Figure: Alignment example with DTW
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DTW’s Problems

Sensitivity to uncertainty

Time consuming computation
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Piecewice DTW to speed-up DTW

1 Piecewice aggregate the time series to reduce their length

2 Applied DTW
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Piecewice DTW to speed-up DTW

(a) DTW

(b) PDTW

Figure: Keogh et Al, KDD 2000

(UCA) ROADEF2017 8 / 29



Piecewice DTW to speed-up DTW
How to choose the number of segments ?
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Figure: Relation between Accuracy and the number of segment on FISH dataset
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Iterative Deepening Dynamic Time Warping
Considers the number of segments which are powers of two

Figure: Shu et Al, SDM 2002
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FDTW: Definitions

Definition

X = x1, · · · , xnis a sequence of numerical values representing the evolution
of a specific quantity during the time. xn is the most recent value.

Definition

A segment Xi of length l of the time series X of length n (l < n) is a
sequence constituted by l consecutive variables of X starting at the
position i and ending at the position i + l − 1. We have:
Xi = xi , xi+1, ..., xi+l−1
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FDTW: Definitions

Definition

The arithmetic average of the data points of a segment Xi of length l is
noted X̄i and is defined by:

X̄i =
1

l

l−1∑
j=0

xi+j
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FDTW: Definitions

Definition

Let T be the set of time series. The Piecewise Aggregate Approximation
(PAA) is defined as follows:

PAA : T × N? → T

(X ,N) 7→ PAA(X ,N) =

{
X̄1, · · · , X̄N if N < |X |

X otherwise

Definition

Let N ∈ N?, X and Y be two time series.

PDTW (X ,Y ,N) = DTW (PAA(X ,N),PAA(Y ,N)).
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FDTW : Heuristic
1. We choose Nc candidates distributed in the space of possible values small, large,
medium

If the length of time series is n = 12 and the number of candidates is
Nc = 4 , we are going to select the candidates 12, 9, 6, 3.

Example

1, 2, [3], 4, 5, [6], 7, 8, [9], 10, 11, [12]
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FDTW: Heuristic
2. We select the candidate that has the minimal classification error with 1NNPDTW

In our example, we may suppose that we get the minimal value with the
candidate 6 : it is thus the best candidate at this step.

Example

1, 2, 3, 4, 5, [6], 7, 8, 9, 10, 11, 12
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FDTW: Heuristic
3. We respectively look between the predecessor and successor of the best candidate for a
number of segments with a lower classification error. This number of segments
corresponds to a local minimum.

In our example, we are going to test the values 4, 5, 7 and 8 to see if there
is a local minimum.

Example

1, 2, 3, [4], [5], 6, [7], [8], 9, 10, 11, 12
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FDTW: Heuristic
4. We loop

We restart at step one, while choosing differents candidates during each
iteration to ensure that we return a good local minimum. We fix the
number of iterations to blog(n)c.
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FDTW

Fact

In summary, in the worst case, we test the Nc first candidates to find the
best one. Then, we test 2n

Nc
other candidates to find the local minimum.

We finally perform nb(Nc) = Nc + 2n
Nc

tests. The minimal number of

tests is done when the number of candidates Nc =
√

2n.
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FDTW

Corollary

For a given a dataset di FDTW (di ) ≤ 1NNDTW (di ) . The quality of the
alignment of our heuristic is better than that of DTW.

Proof.

1NNDTW (di ) = 1NNPDTW (di , n). 1NNDTW (di )is then one of the
candidate considered by the heurisitic FDTW . Since FDTW returns the
minimal classification error from all candidates, the classification error of
1NNDTW is always greater than or equal to FDTW .
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FDTW

Corollary

For a given dataset di that has ci classes, ci ∈ N∗,
accDTW ≥ 1

ci
=⇒ 1

ci
× accmax ≤ accFDTW ≤ accmax
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Number of candidates tested

x xxxxxxx xxxxxxx x xxxxxxxx x x xx xx x x x x

x

xxx
xxxx xxxxxxx x xxxxxxxx x x xx xx x x x x

x

x
xx

x

x
x

x

x
xxxx

x

x

x

xx

x
x

xxxx x

x
xx

x

x

x

x

x

x

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500

R
at

io
 =

 N
um

be
r 

of
 te

st
ed

 v
la

lu
es

 / 
N

um
be

r 
of

 p
os

si
bl

e 
va

lu
es

x

x

x

Time series length

BF

FDTW

IDDTW

(UCA) ROADEF2017 25 / 29



Pairwise comparison
Comparison of the classification error of FDTW in x-axis and IDDTW in y-axis. The
points above the diagonal represent the datasets for which FDTW is better than IDDTW
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Pairwise comparison
Comparison of the classification error of FDTW in x-axis and BF in y-axis. The points on
the diagonal represent the datasets for which FDTW has found the optimal value
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Conclusion

FDTW allows to reduce the storage space and the processing time of
time series classification without decreasing the alignment quality.

Number of segments to be considered for symbolic representations of
time series like SAX, ESAX, SAX-TD.
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Questions ?

We thank the Ministry of Higher Education and Research for funding this
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