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CONTEXT AND PROBLEM |

Context and motivations
Siyou et al., CML@ICML 2015

= Piecewise

= The bicmechanical

analysis of human being
movements during their
locomotion is
performed with various
measuring instruments
{sensors)

= Those measuring instruments

recorded long time series
composed of many cycles or
patterns, representative of the
movements made and effort
produced by the subject during
his displacement

= These cycles are the time

saries analysis units and have
several characteristic properties -
minimum, maximum, duraticn,
mean, median, standard
deviation, Interguartile range, the
area below the cycle.

Ageregate
Appreximation

= Symbolic

Aggregate
Approximation

=Cur geoal Is to provide a symbolic representation that
tzkes into account severz! propertes for each cycle, but
without increasing the number of symbols used for the
representation.
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Time series classification

»  Web site comparison

» PAA+ DTW is among the good classifiers
« No free lunch theorem »




Time series

Definition
X =Xy, -+ ,Xxpis a sequence of numerical values representing the

evolution of a specific quantity during the time. x, is the most
recent value.

A segment X; of length [ of the time series X of length n (/ < n) is
a sequence constituted by / consecutive variables of X starting at

the position 7 and ending at the position i+ /—1. We have:

Xi = Ky yanen Xey g




Time series

Definition

The arithmetic average of the data points of a segment X; of
length [ is noted X; and is defined by:

1!t
X,‘ — T Xi+j
j=0




PAA, PDTW

Let T be the set of time series. The Piecewise Aggregate
Approximation (PAA) is defined as follows:

PAA: T xN*— T

Xi,-, Xnif N < |X]

X otherwise

(X,N) — PAA(X,N) = {

Let Ne N*, X and Y be two time series.

PDTW(X,Y,N) = DTW(PAA(X,N),PAA(Y,N)).




Figure: Euclidean distance (left) - DTW (right)

@ The boundarie condition: The first (respectively last) point of
both time series must be aligned.

@ The monotony condition: during alignment there is no return
to a point which has already been used.

@ The continuity condition: when aligning all data points are
considered

\\\\\\\\\\




DTW
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Figure: Alignment example with DTW
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PDTW

* An optimisation problem :
* Finding the number of segments

* Objective function :
* Accuracy

 Possible solutions

* Brute Force approach
 IDDTW (Shu et al., SDM 2002)
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IDDTW

Shu et al., SDM 2002
Considers the number of segments which are powers of two :

1,2,4,...,2k
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e Conclusion
e Future works

Bl



FDTW

e Jdea:

* Express the number of trials as a function of the time series

length, n

* Look at the minimum number of trials with equal width, Nc

* Nc = square root (2n)

* Example :
* n=12
e Nc=4=> {3,6,9,12}
* Min accuracy with 6
* Explore [4,8]

1,2,(3],4,5,[6],

1,2,3,4,5, 6

7,8,19],10,11, [12]

.7.8,9.10,11,12

1,2,34,5, 6]

.7.8.00.10,11,12
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FDTW

In short, in the worst case, we test the N, first candidates to find

the best one. Then, we test i,—” other candidates to find the local

minimum. We finally perform nb(N.) = N, + EF: tests. The
minimal number of tests is done when the number of candidates

Ne = +/2n.
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FDTW

Lemma :

For a given a dataset di FDTW(d;) <1NNDTW(d;) . The quality
of the alignment of our heuristic is better than that of DTW.

Proof

INNDTW/(d;) =1NNPDTW/(d;,n). LNNDTW!|(d;)is then one of
the candidate considered by the heurisitic FDTW . Since

FD T Wreturns the minimal classification error from all candidates,
the classification error of 1INND TWis always greater than or equal

to FDTW. 0
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FDTW

Proposition :

For a given dataset d; that has c; classes, ¢; € N,
accpTw = 1 1

— G Gi

X aCCmax < aCCFDTW < aCCmax
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Algorithm 1 FDTW(training set, test_set, n,
nb_rep=log(n))

# Look for a good value of the number of segments
N
# using the training set FD TW
for (iin 0 : (nb_rep—1)) do
tab_N < 1: (n—1)
l + floor(n/sqrt(2*n))
tab_N _candidats + seq(from = n,to = 1,by =

# Parallel execution of INNPDTW
mat_r < 1N NPDTW (training_set,
tab_N _candidats)

# Mark candidates already used to not reuse
for (i in tab_candidats) do

tab_N|[i] + —1
end for

# Search for the best candidate with the minimal
error
min < minimun(mat_r)

# look for the local minimun near of the best
candidate
result[[(i + 1)]] + local Minimun(min.N _min,
min.error_min, training_set, tab_N )

end for

# The best local minimal error
m < minimun(result)
return m




Experiments & results

Evaluation methodology

» Interestingness

o Classification accuracy
o Number of trials

» Runtime
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Experiments & results : Accuracy

0.4 05

Brute-force search
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Experiments & results : Runtime
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Conclusion

» Choice of segments length for Time Series Analysis
» The proposed approach:

o Allows selecting a minimal number of trials
o Searches for a local minimum

o (Can be extensible
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Future works

» Extension to global minimum
» Uncertainty
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