Palacky University, Olomouc, Czech Republic
Blaise-Pascal University, Clermont-Ferrand, French Tunis-El-Manar University, Tunis, Tunisia

Boolean factors as a means of clustering of interestingness measures of association rules

Authors: Radim Belohlavek, Dhouha Grissa, Sylvie Guillaume, Engelbert Mephu Nguifo, Jan Outrata

October 18, 2011

Presentation Outline

(1) Problem

2 Properties evaluation on the measures
(3) Clustering

4 Interpretation and comparison to other approaches
(5) Conclusion and Perspectives

I- Problem

Objectives of associations analysis

Unsupervised learning technique, which allows you to :

- Identify patterns or associations between items or objects in a transactional, relational databases, or data warehouses.
- In other words, it consists in identifying items that appear often together at an event.

Association rules

The extraction of association rules $X \rightarrow Y$

- $X \cap Y=\emptyset$
- X, Y are conjunctions of binary variables.

$$
\text { Valid rules }\left\{\begin{array}{c}
\text { Support }(X \rightarrow Y) \geqslant \min _{\text {sup }} \text { (frequency) } \\
\text { Confidence }(X \rightarrow Y) \geqslant \min _{\text {conf }} \text { (strength) }
\end{array}\right.
$$

Association rules

The extraction of association rules $X \rightarrow Y$

- $X \cap Y=\emptyset$
- X, Y are conjunctions of binary variables.

Valid rules $\left\{\begin{array}{c}\text { Support }(X \rightarrow Y) \geqslant \min _{\text {sup }} \text { (frequency) } \\ \text { Confidence }(X \rightarrow Y) \geqslant \min _{\text {conf }} \text { (strength) }\end{array}\right.$

Advantage : Accelerator algorithmic virtues Inconvenient : Irrelevant rules.

Interestingness measures

Irrelevant rules

\downarrow

Additional step of analyzing the extracted rules

- The proposition of many objective interestingness measures
- About sixty measures.

Interestingness measures

Irrelevant rules

Additional step of analyzing the extracted rules

- The proposition of many objective interestingness measures
- About sixty measures.

Which measure to choose?

Which measure to choose?

- Study of the "good" properties of measures
- 21 properties

Assist the user in choosing complementary measures
(elimination of uninteresting rules)

Assist the user in choosing complementary measures

(

Detection of groups of measures

- Interestingness measures clustering (Tan et al. 2004, Huynh et al. 2005, Vaillant 2007, Guillaume et al. 2011)
- Interestingness measures clustering using Boolean Factor Analysis.

Goal

The aim of this work is :

- To help the user to choose the best measure by exploring the possibility of obtaining overlapping clusters of measures using Boolean factor analysis
- To compare the results with those obtained by the AHC and k-means methods (Guillaume et al. 2011).

Measures properties

- 21 properties are listed in the literature
- 2 properties found subjective (based on the user knowledge in Statistics)
(1) Measure comprehensibility
(2) Easiness to fix a threshold

19 properties retained

- Non symmetrical
- Fixed values for different levels of implication
- Measure evolution based on parameters
- Relations between positive and negative rules
- Discrimination in the presence of large data
- Non symmetrical
- Fixed values for different levels of implication
- Measures evolution based on parameters
- Relations between positive and negative rules
- Discrimination in the presence of large data

Non symmetrical

$$
\begin{aligned}
& \mathrm{m}(\mathrm{X} \rightarrow \mathrm{Y}) \neq \mathrm{m}(\mathrm{Y} \rightarrow \mathrm{X}) \\
& \mathrm{m}(\mathrm{X} \rightarrow \mathrm{Y}) \neq \mathrm{m}(\mathrm{X} \rightarrow \overline{\mathrm{Y}})
\end{aligned}
$$

Yes: 1
No: 0

Exemple

$\operatorname{Support}(X \rightarrow Y)=\operatorname{Support}(Y \rightarrow X) \Rightarrow P(X Y)=P(Y X)$ Confidence $(X \rightarrow Y) \neq \operatorname{Confiance}(Y \rightarrow X) \Rightarrow P(Y / X) \neq P(X / Y)$

Fixed values for different levels of implication

$$
\begin{aligned}
& P_{10}(m)=0 \text { if } \forall b \in \mathcal{R} \exists X \rightarrow Y / P(Y / X)=1 \text { and } m(X \rightarrow Y) \neq b \\
& P_{10}(m)=1 \text { if } \forall b \in \mathcal{R} / \forall X \rightarrow Y P(Y / X)=1 \Rightarrow m(X \rightarrow Y)=b
\end{aligned}
$$

Yes: $1 /$ No : 0

Problem Properties evaluation on the measures

Evolution of measures based on parameters

Significance

Measures values

Relations between positive and negative rules

$$
\begin{gathered}
m(\bar{X} \rightarrow Y)=-m(X \rightarrow Y) \\
m(X \rightarrow \bar{Y})=-m(X \rightarrow Y) \\
m(\bar{X} \rightarrow \bar{Y})=m(X \rightarrow Y)
\end{gathered}
$$

Yes: 1
No: 0

Discrimination in the presence of large data

Measures returning different values for distinct levels of implication

19 properties

- Non symmetrical
- Fixed values for different levels of implication
- Measure evolution based on parameters
- Relations between positive and negative rules
- Discrimination in the presence of large data

Properties evaluation on the measures

Study of 62 interestingness measures !

Measure	Formula
Cohen	$2 \frac{p(X Y)-p(X) p(Y)}{p(X) p(\bar{Y}+p(X) p(Y)}$
Causal confidence	$1-\frac{1}{2}\left(\frac{1}{p(X)}+\frac{1}{p(Y)}\right) p(X \bar{Y})$
Bayes factor	$\frac{p(X Y p(Y)}{p(X Y) p(Y)}$
Implication intensity	$p[$ Poisson $(n p(X) p(Y)) \geq p(X \bar{Y})]$
Loevinger	$1-\frac{p(X Y)}{p(X) p(Y)}$
Ochiai	$\frac{p(X Y)}{\sqrt{p(X) p(Y)}}$
Pearl	$p(X)\left\|\frac{p(X)}{p(X)}-p(Y)\right\|$
Y Yule	$\frac{\sqrt{p(X Y) p(\bar{Y})}-\sqrt{p(X \bar{Y}) p(\bar{X})}}{\sqrt{p(X Y) p(\bar{X})}+\sqrt{p(X \bar{Y}) p(\bar{X})}}$

Study of 62 interestingness measures $\times 19$ properties

\Downarrow
Matrix construction !

Measure	P3	P4	P6	P7	P8	P9	P14	P18	P20	P21
Cohen	0	1	1	1	1	1	1	1	0	1
Conf	1	1	1	0	0	0	1	0	0	1
FB	1	1	1	1	1	1	0	0	0	1
II	1	1	1	1	1	1	2	0	1	0
Jaccard	0	1	1	0	1	0	0	0	0	1
M $_{G K}$	1	1	1	1	0	1	1	0	0	1
Pearl	0	0	0	0	0	1	1	1	0	1
YuleY	0	1	1	1	0	1	0	1	0	1

Measure	P3	P4	P6	P7	P8	P9	P14	P18	P20	P21
Cohen	0	1	1	1	1	1	1	1	0	1
Conf	1	1	1	0	0	0	1	0	0	1
FB	1	1	1	1	1	1	0	0	0	1
II	1	1	1	1	1	1	2	0	1	0
Jaccard	0	1	1	0	1	0	0	0	0	1
M $_{G K}$	1	1	1	1	0	1	1	0	0	1
Pearl	0	0	0	0	0	1	1	1	0	1
YuleY	0	1	1	1	0	1	0	1	0	1

Measure	P3	P4	P6	P7	P8	P9	P14	P18	P20	P21
Cohen	0	1	1	1	1	1	1	1	0	1
Conf	1	1	1	0	0	0	1	0	0	1
FB	1	1	1	1	1	1	0	0	0	1
II	1	1	1	1	1	1	2	0	1	0
Jaccard	0	1	1	0	1	0	0	0	0	1
$M_{G K}$	1	1	1	1	0	1	1	0	0	1
Pearl	0	0	0	0	0	1	1	1	0	1
YuleY	0	1	1	1	0	1	0	1	0	1

Non symmetrical measures.

Measure	P3	P4	P6	P7	P8	P9	P14	P18	P20	P21
Cohen	0	1	1	1	1	1	1	1	0	1
Conf	1	1	1	0	0	0	1	0	0	1
FB	1	1	1	1	1	1	0	0	0	1
II	1	1	1	1	1	1	2	0	1	0
Jaccard	0	1	1	0	1	0	0	0	0	1
$M_{G K}$	1	1	1	1	0	1	1	0	0	1
Pearl	0	0	0	0	0	1	1	1	0	1
YuleY	0	1	1	1	0	1	0	1	0	1

Measures decreasing according to the consequent size.

III- Clustering

Clustering of interestingness measures.

(1) Interestingness measures clustering using $A H C$ and k-means methods
(2) Interestingness measures clustering using Boolean Factor Analysis.

Clustering of IMs using AHC and k-means methods.

- consensus for 7 clusters
- Divergence for 12 measures

Clustering of IMs using Boolean factor analysis.

Boolean Factor Analysis (BFA) = decomposition of binary object-attribute data matrix I to Boolean product of object-factor matrix A and factor-attribute matrix B :

$$
l_{i j}=(A \circ B)_{i j}=\max _{l=1}^{k} \min \left(A_{i l}, B_{l j}\right)
$$

$A_{i l}=1 \ldots$ factor $/$ applies to object i
$B_{l j}=1 \ldots$ attribute j is one of the manifestations of factor I
$(A \circ B)_{i j} \ldots$ "object i has attribute j if and only if there is a factor $/$ such that l applies to i and j is one of the manifestations of $l "$

PROBLEM : find the number k of factors as small as possible!

$$
\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right)=\overbrace{\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)}^{\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0
\end{array}\right)}\} k
$$

Boolean factor analysis - Solution using FCA

Belohlavek R., Vychodil V. : Discovery of optimal factors in binary data via a novel method of matrix decomposition. J. Comput. System Sci 76(1)(2010), 3-20.

Matrices A and B can be constructed from a set \mathcal{F} of formal concepts of input data I, so-called factor concepts :

$$
\mathcal{F}=\left\{\left\langle A_{1}, B_{1}\right\rangle, \ldots,\left\langle A_{k}, B_{k}\right\rangle\right\} \subseteq \mathcal{B}(X, Y, I)
$$

- l-th column of $A_{\mathcal{F}}=$ characteristic vector of A_{I}
- l-th row of $B_{\mathcal{F}}=$ characteristic vector of B_{I}

Decomposition using formal concepts to determine factors is optimal :

Theorem

For every $n \times m$ binary matrix I, there exists $\mathcal{F} \subseteq \mathcal{B}(X, Y, I)$ such that $I=A_{\mathcal{F}} \circ B_{\mathcal{F}}$ and $|\mathcal{F}|=\rho(I)$, where $A_{\mathcal{F}}$ and $B_{\mathcal{F}}$ are $n \times k$ and $k \times m$ binary matrices, o is the Boolean product of matrices and ρ is the smallest possible number k of factors (so-called Schein rank of I).

Method

- We extended the original 62×21 measure-property matrix by adding for every property its negation, and obtained a 62×42 measure-property matrix.
- We computed the decomposition of the matrix using a greedy approximation algorithm (from the mentioned paper) and obtained 38 factors, denoted $F_{1}, \ldots . . F_{38}$.
- We took the discovered factors for clusters and looked for the interpretation of the clusters.

I : 62 measures $\times 42$ properties input binary matrix (with negated properties) $=$

$A_{F}: 62$ measures $x 38$ factors binary matrix

$B_{F}: 38$ factors x 42 properties binary matrix

F1	01001010011000000010000000
F2	0101000000000000001100000
F3	00000000000000000000000001
F4	11010000100000000000000000
F5	01000100000000000010000010
F6	010111000000000000110000000
F7	00000000000000000010100000
F8	0111000000010000110000000
F9	0111100000000111001001100000
F10	10000000000000000001000000
F11	10000000000000000001000000

IV- Interpretation and comparison to other approaches

Interpretation of results

We computed the decomposition of the matrix / and obtained 38 factors:

- The first 21 factors cover 94% of the input measure-property matrix.
- The first nine cover 72%.
- The first five cover 52.4\%.
- The first ten cover all measures.

Cumulative cover of input matrix

Results Interpretation

Venn Diagram of Boolean Factors

The interpretation of the first 4 factors, which cover nearly half of the matrix (45.1\%), shows :

- A high similarity with other clusters of measures reported in the literatture.
- A clearly interpretable meaningful overlapping clusters of measures.

Interpretation : Factor 1

The interpretation of the first factor F_{1}, reveals :

- F_{1} applies to 20 measures whose evolutionary curve increases w.r.t. the number of examples and have a fixed point in the case of independence.
- These measures share 9 properties.
- F_{1} applies only to descriptive and discriminant measures that are not based on a probabilistic model.

Comparison to other approaches : Factor 1

The comparison of the first factor F_{1} with the classification results shows:

- F_{1} applies to two classes, C_{6} and C_{7}, which are closely related within the dendogram obtained with the agglomerative hierarchical clustering method (Guillaume et al. 2011).
- $C_{6} \cup C_{7}$ contains 15 measures.
- The 5 missing measure (in the Venn diagram of Boolean factors) form a class obtained with K-means method with Euclidian distance.
AHC :
- The dendogram

Interpretation : Factor 2

The interpretation of the second factor F_{2}, reveals :

- F_{2} applies to 18 measures, whose evolutionary curve increases w.r.t. the number of examples and have a variable point in the case of independence.
- These measures share 11 properties.
- F_{2} applies only to measures that are not discriminant, are indifferent to the first counter-examples, and are not based on a probabilistic model.

Comparison to other approaches : Factor 2

The comparison of the second factor F_{2} with the classification results shows :

- F_{2} applies to two classes, C_{4} and C_{5}, which are also closely related within the dendogram obtained with the agglomerative hierarchical clustering method.
- $C_{4} \cup C_{5}$ contains 22 measures.
- The 4 missing measure (in the Venn diagram of Boolean factors) which not covered by F_{2} since they are not indifferent to the first counter-examples.

V- Conclusion and Perspectives

- The preliminary results on clustering the measures using Boolean factors seem promising.
- A user can benefit of the clustering of measures in using a type of measure and measures that belong to different classes of measures.

Perspectives :

- The method need not start from scratch - an interesting feature that can be explored in the future.

Thank you for your attention !

