PALACKY UNIVERSITY, OLOMOUC, CZECH REPUBLIC BLAISE-PASCAL UNIVERSITY, CLERMONT-FERRAND, FRENCH TUNIS-EL-MANAR UNIVERSITY, TUNIS, TUNISIA

Boolean factors as a means of clustering of interestingness measures of association rules

Authors: Radim Belohlavek, Dhouha Grissa, Sylvie Guillaume, Engelbert Mephu Nguifo, Jan Outrata

October 18, 2011

Presentation Outline

- Properties evaluation on the measures
- 3 Clustering
- Interpretation and comparison to other approaches
- 5 Conclusion and Perspectives

I- Problem

Problem Properties evaluation on the measures	Clustering	Interpretation and comparison to other approaches	Conclusion and Perspectives
• 0 0000 00000000000			

Association rules

Objectives of associations analysis

Unsupervised learning technique, which allows you to :

- Identify patterns or associations between items or objects in a transactional, relational databases, or data warehouses.
- In other words, it consists in identifying items that appear often together at an event.

Problem Properties evaluation on the measures	Clustering	Interpretation and comparison to other approaches	Conclusion and Perspectives
000000000000000000000000000000000000000			

Association rules

Association rules

The extraction of association rules $X \rightarrow Y$

- $X \cap Y = \emptyset$
- *X*, *Y* are conjunctions of binary variables.

Valid rulesSupport(
$$X \rightarrow Y$$
) \geq min_{sup} (frequency)Confidence($X \rightarrow Y$) \geq min_{conf} (strength)

Association rules

Association rules

The extraction of association rules $X \rightarrow Y$

- $X \cap Y = \emptyset$
- *X*, *Y* are conjunctions of binary variables.

Valid rules
$$\begin{cases} Support(X \to Y) \ge min_{sup} \ (frequency) \\ Confidence(X \to Y) \ge min_{conf} \ (strength) \end{cases}$$

Advantage : Accelerator algorithmic virtues Inconvenient : Irrelevant rules.

Irrelevant rules

Additional step of analyzing the extracted rules

- The proposition of many objective interestingness measures
- About sixty measures.

Which measure to choose?

- Study of the "good" properties of measures
- o 21 properties

Assist the user in choosing complementary measures (elimination of uninteresting rules)

Clustering of interestingness measures

Assist the user in choosing complementary measures

Detection of groups of measures

- Interestingness measures clustering (Tan et al. 2004, Huynh et al. 2005, Vaillant 2007, Guillaume et al. 2011)
- Interestingness measures clustering using Boolean Factor Analysis.

Problem Properties evaluation on the measures	Clustering	Interpretation and comparison to other approaches	Conclusion and Perspectives
Objectives			

The aim of this work is :

- To help the user to choose the best measure by exploring the possibility of obtaining overlapping clusters of measures using Boolean factor analysis
- To compare the results with those obtained by the AHC and k-means methods (Guillaume et al. 2011).

(a)

II- Background : *Properties* evaluation on the measures

Problem Properties evaluation on the measures	Clustering	Interpretation and comparison to other approaches	Conclusion and Perspectives
000000 •00000000000			
Properties of measures			

- 21 properties are listed in the literature
- 2 properties found subjective

(based on the user knowledge in Statistics)

- Measure comprehensibility
- Easiness to fix a threshold

19 properties retained

Properties of measures

19 properties

- Non symmetrical
- Fixed values for different levels of implication
- Measure evolution based on parameters
- Relations between positive and negative rules
- Discrimination in the presence of large data

Properties of measures

19 properties

- Non symmetrical
- Fixed values for different levels of implication
- Measures evolution based on parameters
- Relations between positive and negative rules
- Discrimination in the presence of large data

Properties examples

Non symmetrical

$$\begin{split} m(X \to Y) &\neq m(Y \to X) \\ m(X \to Y) &\neq m(X \to \overline{Y}) \end{split}$$

Yes : 1 No : 0

Exemple

$$\begin{array}{ll} Support(X \rightarrow Y) &= Support(Y \rightarrow X) \Rightarrow P(XY) = P(YX) \\ Confidence(X \rightarrow Y) \neq Confiance(Y \rightarrow X) \Rightarrow P(Y/X) \neq P(X/Y) \end{array}$$

(ロ)

Properties examples

Fixed values for different levels of implication

$$P_{10}(m) = 0 \text{ if } \forall b \in \mathcal{R} \exists X \to Y/P(Y/X) = 1 \text{ and } m(X \to Y) \neq b$$

$$P_{10}(m) = 1 \text{ if } \forall b \in \mathcal{R} / \forall X \to Y P(Y/X) = 1 \Rightarrow m(X \to Y) = b$$

Yes: 1 / No: 0

Problem Properties evaluation on the measures Clustering Interpretation and comparison to other approaches Conclusion and Perspectives

Properties examples

Evolution of measures based on parameters

Problem Properties evaluation on the measures	Clustering	Interpretation and comparison to other approaches	Conclusion and Perspectives
000000000000000000000000000000000000000	00000	000000	

Properties examples

Relations between positive and negative rules

$$\begin{split} m(\overline{X} \to Y) &= -m(X \to Y) \\ m(X \to \overline{Y}) &= -m(X \to Y) \\ m(\overline{X} \to \overline{Y}) &= m(X \to Y) \end{split}$$

Yes : 1 No : 0

Problem Properties evaluation on the measures Clustering Interpretation and comparison to other approaches Conclusion and Perspectives

Properties examples

Discrimination in the presence of large data

Measures returning different values for distinct levels of implication

Problem Properties evaluation on the measures	Clustering	Interpretation and comparison to other approaches	Conclusion and Perspectives
000000000000000000000000000000000000000			

Properties examples

19 properties

- Non symmetrical
- Fixed values for different levels of implication
- Measure evolution based on parameters
- Relations between positive and negative rules
- Discrimination in the presence of large data

Properties evaluation on the measures

 Problem
 Properties evaluation on the measures
 Clustering
 Interpretation and comparison to other approaches
 Conclusion and Perspectives

 000000
 000000
 0000000
 00
 00
 00

Abstract Interestingness measures

Study of 62 interestingness measures!

Measure	Formula
Cohen	$2 \frac{p(XY) - p(X)p(Y)}{p(X)p(Y) + p(X)p(Y)}$
Causal confidence	$1 - rac{1}{2} \left(rac{1}{p(X)} + rac{1}{p(ar{Y})} ight) p(Xar{Y})$
Bayes factor	$\frac{\rho(XY)\rho(\bar{Y})}{\rho(X\bar{Y})\rho(Y)}$
Implication intensity	$p[Poisson(np(X)p(\bar{Y})) \ge p(X\bar{Y})]$
Loevinger	$1 - \frac{p(X\bar{Y})}{p(X)p(\bar{Y})}$
Ochiai	$\frac{p(XY)}{\sqrt{p(X)p(Y)}}$
Pearl	$p(X) rac{p(XY)}{p(X)}-p(Y) $
Y Yule	$\frac{\sqrt{\rho(XY)\rho(\bar{X}\bar{Y})} - \sqrt{\rho(X\bar{Y})\rho(\bar{X}Y)}}{\sqrt{\rho(XY)\rho(\bar{X}\bar{Y})} + \sqrt{\rho(X\bar{Y})\rho(\bar{X}Y)}}$

Problem Properties evaluation on the measures	Clustering	Interpretation and comparison to other approaches	Conclusion and Perspectives
000000000000000000000000000000000000000			

Measure-property matrix

Study of 62 interestingness measures \times 19 properties

₩

Matrix construction !

Measure	P3	P4	P6	P7	P8	P9	P14	P18	P20	P21
Cohen	0	1	1	1	1	1	1	1	0	1
Conf	1	1	1	0	0	0	1	0	0	1
FB	1	1	1	1	1	1	0	0	0	1
II	1	1	1	1	1	1	2	0	1	0
Jaccard	0	1	1	0	1	0	0	0	0	1
M _{GK}	1	1	1	1	0	1	1	0	0	1
Pearl	0	0	0	0	0	1	1	1	0	1
YuleY	0	1	1	1	0	1	0	1	0	1

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへで

Problem Properties evaluation on the measures	Clustering	Interpretation and comparison to other approaches	Conclusion and Perspectives
000000 00000000000			

Evaluation measures example

Measure	P3	P4	P6	P7	P8	P9	P14	P18	P20	P21
Cohen	0	1	1	1	1	1	1	1	0	1
Conf	1	1	1	0	0	0	1	0	0	1
FB	1	1	1	1	1	1	0	0	0	1
II	1	1	1	1	1	1	2	0	1	0
Jaccard	0	1	1	0	1	0	0	0	0	1
M _{GK}	1	1	1	1	0	1	1	0	0	1
Pearl	0	0	0	0	0	1	1	1	0	1
YuleY	0	1	1	1	0	1	0	1	0	1

Problem Properties evaluation on the measures	Clustering	Interpretation and comparison to other approaches	Conclusion and Perspectives
00000000000000000	00000	000000	

Evaluation measures example	
=	

Measure	P3	P4	P6	P7	P8	P9	P14	P18	P20	P21
Cohen	0	1	1	1	1	1	1	1	0	1
Conf	1	1	1	0	0	0	1	0	0	1
FB	1	1	1	1	1	1	0	0	0	1
II	1	1	1	1	1	1	2	0	1	0
Jaccard	0	1	1	0	1	0	0	0	0	1
M _{GK}	1	1	1	1	0	1	1	0	0	1
Pearl	0	0	0	0	0	1	1	1	0	1
YuleY	0	1	1	1	0	1	0	1	0	1

Non symmetrical measures.

Problem Properties evaluation on the measures	Clustering	Interpretation and comparison to other approaches	Conclusion and Perspectives
00000000000000000	00000	000000	

	Evalua	tion measures examp	le
--	--------	---------------------	----

Measure	P3	P4	P6	P7	P8	P9	P14	P18	P20	P21
Cohen	0	1	1	1	1	1	1	1	0	1
Conf	1	1	1	0	0	0	1	0	0	1
FB	1	1	1	1	1	1	0	0	0	1
II	1	1	1	1	1	1	2	0	1	0
Jaccard	0	1	1	0	1	0	0	0	0	1
M _{GK}	1	1	1	1	0	1	1	0	0	1
Pearl	0	0	0	0	0	1	1	1	0	1
YuleY	0	1	1	1	0	1	0	1	0	1

Measures decreasing according to the consequent size.

III- Clustering

Clustering of interestingness measures.

- Interestingness measures clustering using AHC and k-means methods
- 2 Interestingness measures clustering using Boolean Factor Analysis.

Problem Properties evaluation on the measures Clustering Interpretation and comparison to other approaches Conclusion and Perspectives 00000

IMs clustering using AHC and k-means methods

Clustering of IMs using AHC and k-means methods.

consensus for 7 clusters

 Divergence for 12 measures

Clustering of IMs using Boolean factor analysis.

Boolean Factor Analysis (BFA) = decomposition of binary object-attribute data matrix / to Boolean product of object-factor matrix A and factor-attribute matrix B:

$$I_{ij} = (\boldsymbol{A} \circ \boldsymbol{B})_{ij} = \max_{l=1}^{k} \min(\boldsymbol{A}_{il}, \boldsymbol{B}_{lj})$$

 $A_{il} = 1 \dots$ factor l applies to object i $B_{ii} = 1 \dots$ attribute *i* is one of the manifestations of factor *l*

 $(A \circ B)_{ii} \dots$ "object *i* has attribute *j* if and only if there is a factor *l* such that *I* applies to *i* and *j* is one of the manifestations of *I*"

PROBLEM : find the number k of factors as small as possible !

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix} = \underbrace{\begin{pmatrix} k \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}}_{k} \circ \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}_{k} \begin{cases} k \\ k \\ 26(41) \\ 26(41) \end{cases}$$

Boolean factor analysis – Solution using FCA

Belohlavek R., Vychodil V. : Discovery of optimal factors in binary data via a novel method of matrix decomposition. *J. Comput. System Sci* **76**(1)(2010), 3–20.

Matrices *A* and *B* can be constructed from a set \mathcal{F} of formal concepts of input data *I*, so-called **factor concepts** :

$$\mathcal{F} = \{ \langle A_1, B_1 \rangle, \dots, \langle A_k, B_k \rangle \} \subseteq \mathcal{B}(X, Y, I)$$

- *I*-th column of $A_{\mathcal{F}}$ = characteristic vector of A_I
- *I*-th row of $B_{\mathcal{F}}$ = characteristic vector of B_I

Decomposition using formal concepts to determine factors is optimal :

Theorem

For every $n \times m$ binary matrix I, there exists $\mathcal{F} \subseteq \mathcal{B}(X, Y, I)$ such that $I = A_{\mathcal{F}} \circ B_{\mathcal{F}}$ and $|\mathcal{F}| = \rho(I)$, where $A_{\mathcal{F}}$ and $B_{\mathcal{F}}$ are $n \times k$ and $k \times m$ binary matrices, \circ is the Boolean product of matrices and ρ is the smallest possible number k of factors (so-called Schein rank of I).

Method

- We extended the original 62×21 measure-property matrix by adding for every property its negation, and obtained a 62×42 measure-property matrix.
- We computed the decomposition of the matrix using a greedy approximation algorithm (from the mentioned paper) and obtained 38 factors, denoted F_1, \dots, F_{38} .
- We took the discovered factors for clusters and looked for the interpretation of the clusters.

1:62 measures x 42 properties input binary matrix (with negated properties) =

	P3	P4	P5	P6	P7	$\mathbf{P8}$	$\mathbf{P9}$	P10	P11	P12	P13	P14.1	P15	P16	P17
correlation	0	1	1	1	1	1	1	0	0	1	1	0	0	1	1
Cohen	0	1	1	1	1	1	1	0	0	1	1	0	0	0	0
confidence	1	1	1	1	0	0	0	1	1	0	0	0	0	0	0
causal confidence	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0
Pavillon	1	1	0	1	1	1	1	0	0	1	1	0	0	0	1
Ganascia	1	1	1	1	0	0	0	1	1	0	0	0	0	0	1
causal confirmation	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
descriptive confirmation	1	1	0	1	0	0	0	0	1	0	0	0	0	0	1
conviction	1	1	1	1	1	1	1	0	0	1	1	0	0	0	0
cosine	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0
coverage	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

A_F: 62 measures x 38 factors binary matrix

	F1 F2	F4	F5	10	F8	F9	F10	F11	F12	F13	F14	FIS	10	FIS	F19	F20	F21	F22	F23	F24	
correlation	$1 \ 0 \ 0$	0	$0 \ 1$. 0	0	1	0	0	0	1	0	0 1	0 (0 0	0	0	1	0	1	0	
Cohen	$1 \ 0 \ 0$	0	0 1	0	0	0	0	0	0	1	0	0	1 (0 (0	0	1	0	1	0	
confidence	010	1	0.0	0 0	0	0	0	0	1	0	0	0	1 (0	0	0	0	0	0	0	
causal confidence	010	0	0 1	. 0	0	0	1	0	1	0	0	0	1 (0 0	0	0	0	0	0	0	
Pavillon	100	0	0 1	0	0	0	1	0	0	0	0	0 1	0 (0	0	1	1	0	0	0	
Ganascia	010	1	0.0	0 0	0	0	0	0	1	0	0	0 1	0 (0 0	0	0	0	0	0	0	
causal confirmation	010	0	0 1	. 0	0	0	1	1	0	0	0	0	1 (0	0	0	0	0	0	0	
descriptive confirmation	010	1	0.0	0 0	0	0	0	0	0	0	1	0 1	0 (0	0	1	0	0	0	0	
conviction	100	0	0.0	1	0	0	0	0	0	0	0	1	1 (0	0	0	1	0	0	0	
cosine	010	0	1.0	0 0	0	0	0	1	0	1	1	0 1	0 (0	0	1	0	0	0	0	
coverage	$0 \ 0 \ 1$	0	0.0	0 0	0	0	1	0	0	0	1	0 0	0 (0	0	0	0	0	0	1	

B_F : 38 factors x 42 properties binary matrix

Problem Properties evaluation on the measures Clustering

IV- Interpretation and comparison to other approaches

(日)

We computed the decomposition of the matrix *I* and obtained 38 factors :

- The first 21 factors cover 94% of the input measure-property matrix.
- The first nine cover 72%.
- The first five cover 52.4%.
- The first ten cover all measures.

Results Interpretation

Venn Diagram of Boolean Factors

32/41

Problem	Properties evaluation on the measures	Clustering	Interpretation and comparison to other approaches	Conclusion and Perspectives
			000000	
Results In	nterpretation			

The interpretation of the first 4 factors, which cover nearly half of the matrix (45.1%), shows :

- A high *similarity* with other clusters of measures reported in the literatture.
- A clearly interpretable meaningful overlapping clusters of measures.

The interpretation of the first factor F_1 , reveals :

- *F*₁ applies to 20 measures whose evolutionary curve increases w.r.t. the number of examples and have a fixed point in the case of independence.
- These measures share 9 properties.
- *F*₁ applies only to descriptive and discriminant measures that are not based on a probabilistic model.

The comparison of the first factor F_1 with the classification results shows :

- F_1 applies to two classes, C_6 and C_7 , which are closely related within the dendogram obtained with the *agglomerative hierarchical clustering* method (Guillaume et al. 2011).
- $C_6 \cup C_7$ contains 15 measures.
- The 5 missing measure (in the Venn diagram of Boolean factors) form a class obtained with *K-means* method with *Euclidian* distance.

AHC : • The dendogram

The interpretation of the second factor F_2 , reveals :

- *F*₂ applies to 18 measures, whose evolutionary curve increases w.r.t. the number of examples and have a variable point in the case of independence.
- These measures share 11 properties.
- *F*₂ applies only to measures that are not discriminant, are indifferent to the first counter-examples, and are not based on a probabilistic model.

The comparison of the second factor F_2 with the classification results shows :

- *F*₂ applies to two classes, *C*₄ and *C*₅, which are also closely related within the dendogram obtained with the *agglomerative hierarchical clustering* method.
- $C_4 \cup C_5$ contains 22 measures.
- The 4 missing measure (in the Venn diagram of Boolean factors) which not covered by *F*₂ since they are not indifferent to the first counter-examples.

Problem Properties evaluation on the measures Clustering Interpretation and comparison to other approaches Conclusion and Perspectives

V- Conclusion and Perspectives

↓□ → ↓ @ → ↓ @ → ↓ @ → ↓ @

Problem	Properties evaluation on the measures	Clustering	Interpretation and comparison to other approaches	Conclusion and Perspectives
				••
Conclusio	on and Perspectives			

- The preliminary results on clustering the measures using Boolean factors seem promising.
- A user can benefit of the clustering of measures in using a type of measure and measures that belong to different classes of measures.

Perspectives :

 The method need not start from scratch – an interesting feature that can be explored in the future. Problem Properties evaluation on the measures Clustering Interpretation and comparison to other approaches Conclusion and Perspectives

 $\circ \circ$

Conclusion and Perspectives

Thank you for your attention !

+ = + + = + + = + + = + +

Return