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Association rules

Objectives of associations analysis

Unsupervised learning technique, which allows you to :

» |dentify patterns or associations between items or objects in a
transactional, relational databases, or data warehouses.

» In other words, it consists in identifying items that appear often
together at an event.
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Association rules

Association rules

The extraction of association rules X — Y

e XNnY=0
@ X, Y are conjunctions of binary variables.

Support(X — Y) > mmsup (frequency)

valid r ules{ Confidence(X — Y) = Mingn: (strength)
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Association rules

Association rules

The extraction of association rules X — Y

e XNY=0
@ X, Y are conjunctions of binary variables.

Support(X — Y) > mins,, (frequency)

Vel RS { Confidence(X — Y) > mingn: (strength)

Advantage : Accelerator algorithmic virtues
Inconvenient : Irrelevant rules.
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Interestingness measures

Interestingness measures

Irrelevant rules

\ %

Additional step of analyzing the extracted rules

@ The proposition of many objective interestingness measures
@ About sixty measures.
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Interestingness measures

Interestingness measures

Irrelevant rules
Additional step of analyzing the extracted rules

@ The proposition of many objective interestingness measures
@ About sixty measures.

Which measure to choose ?
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Measures selection assistance

Which measure to choose ? '

@ Study of the "good" properties of measures
@ 21 properties

Assist the user in choosing complementary measures

(elimination of uninteresting rules)
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Clustering of interestingness measures

Assist the user in choosing complementary measures

Detection of groups of measures

» Interestingness measures clustering (7an et al. 2004, Huynh et
al. 2005, Vaillant 2007, Guillaume et al. 2011)

» Interestingness measures clustering using Boolean Factor
Analysis.
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Obijectives

The aim of this work is :

» To help the user to choose the best measure by exploring the
possibility of obtaining overlapping clusters of measures using
Boolean factor analysis

» To compare the results with those obtained by the AHC and
k-means methods (Guillaume et al. 2011).
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Properties of measures

Measures properties I

@ 21 properties are listed in the literature
@ 2 properties found subjective

(based on the user knowledge in Statistics)

@ Measure comprehensibility

© Easiness to fix a threshold

G

19 properties retained
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Properties of measures

19 properties

@ Non symmetrical

@ Fixed values for different levels of implication
@ Measure evolution based on parameters

@ Relations between positive and negative rules
@ Discrimination in the presence of large data

12/41



Problem Properties evaluation on the measures Clustering Interpretation and comparison to other approaches Conclusion and Persp
00080

Properties of measures

19 properties

@ Non symmetrical

@ Fixed values for different levels of implication
@ Measures evolution based on parameters

@ Relations between positive and negative rules
@ Discrimination in the presence of large data
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Properties examples

Non symmetrical I

m(X —Y) #m(Y = X) @ Yes : 1
m(X —=Y)#mX-=Y) No:0

Support(X — Y) = Support(Y — X) = P(XY) = P(YX)
Confidence(X — Y) # Confiance(Y — X) = P(Y/X) # P(X/Y)
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Fixed values for different levels of implication I

0 1/2 Pr(Y) 1 Pr(Y/X)
O @ @ @

Incompatibility Equilibrium Independence Logic Implication

Properties examples

X Q

Cje fe Re®

Pio(m)=0 ifYbe RIX — Y/P(Y/X)=1and m(X — Y)#b
Po(m)=1 if¥be R/YX—YPY/X)=1 = m(X - Y)=b

Yes:1/No:0
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Problem Properties evaluation on the measures Clust

jelelele] lelelele}
Evolution of measures based on parameters I

L Q

o L@

3
>

Significance

Properties examples

Measures values
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Properties examples

Relations between positive and negative rules I

mX —=Y)=-mX-=Y)
mX = Y) = —m(X = Y) > Yes:1

mX—=Y)=mX-=Y)
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Properties examples
Discrimination in the presence of large data I

Properties evaluation on the measures

Measures returning different values for distinct levels of
implication
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Properties examples

19 properties

© 6 6 6 o

Properties evaluation on the measures
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n the measures

Abstract Interestingness measures

and comparison to other approaches Conclusion and Perspectives

Study of 62 interestingness measures ! I

Measure Formula
p(XY)—p(X)p(Y)
Cohen UM 2]
Causal confidence 1-3 (50 * 59 )p(X Y)
PXY)p(Y) ( )
Bayes factor oY)
Implication intensity  p[Poisson(np(X)p(Y)) > p(XY)]
; _ _p(XY)
Loevinger ST
Ochiai R
;Y))p( Y)
Pearl PX) 1550 — P 0l
Y Yule VPOV)pXY

)=/ P(XV)p(X
V/P(XY)p(X +\/p(xv< )
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Measure-property matrix

Study of 62 interestingness measures x 19 properties I

4

Matrix construction !

Measure P3 P4 P6 P7 P8 P9 P14 P18 P20 P21
Cohen 0 1 1 1 1 1 1 1 0 1
Conf 1 1 1 0 0 0 1 0 0 1

FB 1 1 1 1 1 1 0 0 0

Il 1 1 1 1 1 1 2 0 1 0
Jaccard 0 1 1 0 1 0 0 0 0 1
Mgk 1 1 1 1 0 1 1 0 0 1
Pearl 0 0 0 0 0 1 1 1 0 1
YuleY 0 1 1 1 0 1 0 1 0 1
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Evaluation measures example

Measure P3 P4 P6 P7 P8 P9 P14 P18 P20 P21
Cohen 0 1 1 1 1 1 1 1 0 1
Conf 1 1 1 0 0 0 1 0 0 1
FB 1 1 1 1 1 1 0 0 0 1
Il 1 1 1 1 1 1 2 0 1 0
Jaccard 0 1 1 0 1 0 0 0 0 1
Mgk 1 1 1 1 0 1 1 0 0 1
Pearl 0 0 0 0 0 1 1 1 0 1
YuleY 0 1 1 1 0 1 0 1 0 1
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Evaluation measures example

Measure P3 P4 P6 P7 P8 P9 P14 P18 P20 P21
Cohen 0 1 1 1 1 1 1 1 0 1
FB 1 1 1 1 1 1 0 0 0 1
Jaccard 0 1 1 0 1 0 0 0 0 1
Pearl 0 0 0 0 0 1 1 1 0 1

Non symmetrical measures.
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°

Evaluation measures example

Measure P3 P4 P6 P7 P8 P9 P14 P18 P20 P21
Cohen 0 1 1 1 1 1 1 1 0 1
FB 1 1 1 1 1 1 0 0 0 1
Jaccard 0 1 1 0 1 0 0 0 0 1
Pearl 0 0 0 0 0 1 1 1 0 1

Measures decreasing according to the consequent size.
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lll- Clustering
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Clustering of interestingness measures. I

@ Interestingness measures clustering using AHC and k-means
methods

@ Interestingness measures clustering using Boolean Factor
Analysis.
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@ consensus for7
clusters

@ Divergence for
12 measures

S

likelinood index
1
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PDI |,

IP3E
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implication index
Gini
Jmeasure

dependency
prevalence

coverage
mutual information p/

precision
Jaccard

recall

causal dependency

causal confirmation

causal confidence

causal confirmed confidence
negative reliability

Kulczynski

variation support
* Pearl

Sebag

least contradiction
descriptive confirmation
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Laplace
confidence

Zhang
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correlation information gain
novelty relative risk
K Bayes factor
collective strength conviction
Cohen _ | © | Loevinger
odds ratio Pavillon
Kiosgen

one way support
two way support

Interpretation and comparison to other approaches Conclusion and Perspectives
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IMs clustering using boolean factor analysis

Clustering of IMs using Boolean factor analysis. I

Boolean Factor Analysis (BFA) = decomposition of binary
object-attribute data matrix / to Boolean product of object-factor
matrix A and factor-attribute matrix B :

k
I,']' = (A o B),/ = r?_a1x min(A,-,, B/])
Ay =1 ...factor | applies to object i
Bj =1 ...attribute j is one of the manifestations of factor /

(Ao B)j ..."“object i has attribute j if and only if there is a factor / such
that / applies to /i and j is one of the manifestations of /”

PROBLEM : find the number k of factors as small as possible !
k

_._._._.
D = -
> - 0o o
=)
~ 020
> - 0 O
~ 020
> o0 o =
O = O =
> & = o
> o 2o
> 2 0o o
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s clustering using boolean factor analysis

Boolean factor analysis — Solution using FCA I

Belohlavek R., Vychodil V. : Discovery of optimal factors in binary data via a
novel method of matrix decomposition. J. Comput. System Sci 76(1)(2010),
3-20.

Matrices A and B can be constructed from a set F of formal concepts
of input data /, so-called factor concepts :

F={(A1,By),...., (A, B)} CB(X,Y,I)

@ /-th column of Az = characteristic vector of A,
@ /-th row of B = characteristic vector of B;

Decomposition using formal concepts to determine factors is optimal :

For every n x m binary matrix I, there exists F C B(X, Y, l) such that
I = Ar o Br and |F| = p(l), where Ax and Bx are n x k and k x m
binary matrices, o is the Boolean product of matrices and p is the
smallest possible number k of factors (so-called Schein rank of I).
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IMs clustering using boolean factor analysis

Method

» We extended the original 62 x 21 measure-property matrix by
adding for every property its negation, and obtained a 62 x 42
measure-property matrix.

» We computed the decomposition of the matrix using a greedy
approximation algorithm (from the mentioned paper) and
obtained 38 factors, denoted F,.....Fas.

» We took the discovered factors for clusters and looked for the
interpretation of the clusters.
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[SleleYe] ) 0000 0

correlation | 0

Cohen | 0
confidence
causal confidence
Pavillon

causal confirmation
descriptive confirmation

conviction

11000000000
00001000001
11100110000
cosine | 0 01000000000
coverage 100DO0ODOCO0OODO0CO0O0DO0O0O0O0

1
1
1
Ganascia | 1
1
1
1

Af : 62 measures x 38 factors B : 38 factors x 42 properties
binary matrix binary matrix
correlation [100001001000100000001010 F1 [0100101001100000001000000
Cohen [100001000000100100001010 F2 [010100000000000000110000 0
confidence [010100000001000100000000 F3 [00000000000000000000000 0 1
causal confidence [010001000101000100000000 F4 (1101000010000000000000 00 0
avillon {100001000100000000011000 F5 [01000100000000000010000 10
Ganascia [010100000001000000000000 F6 [01011100000000000011000 0 0
causal confirmation [010001000110000100000000 F7 [0000000000000000001010000
descriptive confirmation [010100000000010000010000 F& [01110000000100001100000 00
conviction [100000100000001100001000 F9 [0111100000000111001001000
cosine [010010000010110000010000 F10 [1000000000000000000100 000
coverage [001000000100010000000001 F11 [00000000000000000010000 00
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IV- Interpretation and comparison to
other approaches
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Interpretation of results I

We computed the decomposition of the matrix / and obtained 38
factors :

@ The first 21 factors cover 94% of the input measure-property
matrix.

@ The first nine cover 72%.
@ The first five cover 52.4%.
@ The first ten cover all measures.

Results Interpretation

Cumulative cover of input matrix
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Results Interpretation

Venn Diagram of Boolean Factors
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Interpretation and comparison to other approaches Conclusion and Perspectives
0®00000
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Results Interpretation

The interpretation of the first 4 factors, which cover nearly half of the
matrix (45.1%), shows :

» A high similarity with other clusters of measures reported in the
literatture.

» A clearly interpretable meaningful overlapping clusters of
measures.
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Results Interpretation

Interpretation : Factor 1 I

The interpretation of the first factor F4, reveals :

@ [ applies to 20 measures whose evolutionary curve increases
w.r.t. the number of examples and have a fixed point in the case
of independence.

@ These measures share 9 properties.

@ F; applies only to descriptive and discriminant measures that are
not based on a probabilistic model.
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Comparison to other approaches : Factor 1 I

The comparison of the first factor F; with the classification results
shows :

@ F applies to two classes, Cs and C;, which are closely related
within the dendogram obtained with the agglomerative
hierarchical clustering method (Guillaume et al. 2011).

@ Cg U C7 contains 15 measures.

@ The 5 missing measure (in the Venn diagram of Boolean factors)
form a class obtained with K-means method with Euclidian
distance.

AHC :
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Results Interpretation

Interpretation : Factor 2 I

The interpretation of the second factor F», reveals :

@ F, applies to 18 measures, whose evolutionary curve increases
w.r.t. the number of examples and have a variable point in the
case of independence.

@ These measures share 11 properties.

@ [ applies only to measures that are not discriminant, are
indifferent to the first counter-examples, and are not based on a
probabilistic model.
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Results Interpretation

Comparison to other approaches : Factor 2 I

The comparison of the second factor F, with the classification results
shows :

@ F, applies to two classes, C4 and Cs, which are also closely
related within the dendogram obtained with the agglomerative
hierarchical clustering method.

@ C4 U Cs contains 22 measures.

@ The 4 missing measure (in the Venn diagram of Boolean factors)
which not covered by F, since they are not indifferent to the first
counter-examples.
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V- Conclusion and Perspectives |
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Conclusion and Perspectives

@ The preliminary results on clustering the measures using
Boolean factors seem promising.

@ A user can benefit of the clustering of measures in using a type
of measure and measures that belong to different classes of
measures.

Perspectives :

@ The method need not start from scratch — an interesting feature
that can be explored in the future.
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Conclusion and Perspectives
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