Semi-average criterion in community detection problems

Shestakov Andrey

Scientific Supervisors:

Boris Mirkin (HSE)

Engelbert Mephu Nguifo (LIMOS)

Outline

- The task of Community detection
 - Community Structure
 - Methods and algorithms
- Semi-average clustering criterion
 - Formulation
 - Greedy cluster extraction
 - Search Strategies
- Comparative coefficients
 - Quality measures
 - Scheme of experiments
 - Results

Main goals

- Formulate various versions of the community detection algorithm, that optimizes semi-average clustering criterion
- Develop the platform for comparison experiments

Outline

- The task of Community detection
 - Community Structure
 - Methods and algorithms
- Semi-average clustering criterion
 - Formulation
 - Greedy cluster extraction
 - Search Strategies
- Comparative coefficients
 - Quality measures
 - Scheme of experiments
 - Results

Community detection task

Community Structure

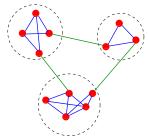


Figure 1: Simple example of network with community structure

- Community structure property is shared be real-world networks as small-world & scale-free properties
- First mentioned in [Girvan and Newman, 2002]

The task of Community detection

- Graph partitioning
 - Cuts
- Hierarchical clustering
 - Agglomerative and divisive approach
- Canonical clustering algorithms
- Spectral clustering
 - Laplace matrix L = D A
- Stochastic algorithms
 - Transition matrix $T = AD^{-1}$
- Modularity optimization
 - $Q = \frac{1}{2m} \sum_{ij} \left(a_{ij} \frac{k_i k_j}{2m} \right) \delta(\mathcal{C}_i, \mathcal{C}_j)$

Outline

- The task of Community detection
 - Community Structure
 - Methods and algorithms
- Semi-average clustering criterion
 - Formulation
 - Greedy cluster extraction
 - Search Strategies
- Comparative coefficients
 - Quality measures
 - Scheme of experiments
 - Results

Formulation

Notation

- ullet ${f A}=\{a_{ij}\}$ entity-to-entity similarity matrix
- *S* cluster (set of points)

Criterion

$$b(S) = \frac{\sum_{i,j \in S} a_{ij}}{|S|} = (|S| - 1)a(S), \tag{1}$$

where
$$a(S) = \frac{\sum_{i,j \in S} a_{ij}}{|S|(|S|-1)}$$
 (2)

Some derivations

$$b(S+k) - b(S) = \frac{\sum_{i,j \in S \cap k} a_{ij}}{|S| + 1} - \frac{\sum_{i,j \in S} a_{ij}}{|S|} = \dots =$$

$$= \frac{2|S|a(k,S) - a(S)(|S| - 1)}{|S| + 1},$$
(3)

$$b(S-k) - b(S) = \frac{\sum_{i,j \in S/k} a_{ij}}{|S| - 1} - \frac{\sum_{i,j \in S} a_{ij}}{|S|} = \dots = a(S) - 2a(k, S).$$
(4)

where
$$a(k,S) = \begin{cases} \sum_{i \in S} a_{ik} / (|S| - 1) & \text{if } k \in S \\ \sum_{i \in S} a_{ik} / |S| & \text{otherwise} \end{cases}$$
 (5)

Formulation

General derivation

$$\Delta_k b(S) = z_k \left[\frac{(|S| + z_k)a(S) - 2\left(|S| + \frac{z_k + 1}{2}\right)a(k, S)}{|S| + 1} \right]$$
 (6)

Properties

• Cluster S is optimal by (1) if $\forall k \in S \ \alpha(k,S) = a(k,S) - \frac{a(S)}{2} > 0$ (determined from (3)-(4))

Similarity matrix adjustments

- **1** By subtraction of a constant "noise" level π : $\mathbf{A} \pi$. Usually π is calculated as a mean value over all entities of matrix \mathbf{A}
- ② By subtracting random interactions. This approach has many in common with Newman's modularity concept: $\mathbf{A}' = \{a_{ij} k_i k_j / 2m\}$.

Algorithm 1 AddRemAdd(*i*) algorithm

Input: Adjacency matrix $\mathbf{A} = (a_{ij})$, initial vertex index i

Output: Sub-optimal cluster S

Step 1: Initialization State n = |V|

- 1: Set *n*-dimensional vector **z** with $z_i = 1$ and $z_i = -1$, $j \neq i$
- 2: Find i^* s.t. $a_{ii^*} = \max_i a_{ii}$, set $z_{i^*} = 1$, $n_S = 2$ cluster cardinality
- 3: Set $ma = a_{ii^*}$ the average within-cluster similarity (2)
- 4: Set $a(i)=a(i^*)=a_{ii^*}$ and $a(j,S)=(a_{ij}+a_{i^*j})/2$ average similarities of entities to cluster

6: repeat

7: for $v_k \in V$ do

8:
$$d_k = z_k \left[\frac{\left(n_S + z_k \right) \cdot ma - 2 \left(n_S + \frac{z_k + 1}{2} \right) a(k)}{n_S + 1} \right]$$

9: Find k^* s.t. $d_{k^*} = \max_k d_k$

Step 3: Update

10: **if** $d_{k^*} > 0$ **then**

11: Update
$$ma = ma + \frac{2z_{k^*}}{n_S - \frac{3z_{k^*} + 1}{2}} [ma - a(k^*)]$$

12: Update
$$a(k) = a(k) + z_{k^*} \frac{1}{|S| - \frac{z_{k^*}}{|S|} - z_{k^*}} [a(k) - a_{kk^*}]$$
 for each $k \neq k^*$

13:
$$n_S = n_S - z_{k^*}$$

14:
$$z_{k^*} = -z_{k^*}$$

15: **until** any
$$d_k > 0$$

16: Output cluster $S = \{i : z_i = 1\}$ with corresponding average similarity a(S) and criterion value b(S)

Search Strategies

Cluster search

- Incremental Apply AddRemAdd(i) to all vertices v_i , choose cluster S^* with maximum value of $b(S^*)$
- Randomized Choose initial randomly i only once and take the output of AddRemAdd(i)

Community search

- Overlapping Additive clusters After obtaining cluster choosing a cluster S, matrix \mathbf{A} is updates as $\mathbf{A} = \mathbf{A} a(S)z_Sz_S^\mathsf{T}$
- Non-overlapping clusters. After obtaining cluster S, one just remove rows and columns, correspondent to vertices in S from matrix ${\bf A}$

The note on unweighted networks

Bad decision making

Possible solutions

- Initialization from dense subset of vertices (*n*-clique, *k*-core)
- Recalculation of similarity matrix
 - Ratio of common neighbours

$$\omega_{ij} = \frac{|N(v_i) \cap N(v_j)|}{|N(v_i) \cup N(v_j)|},$$

Pirson's correlation

$$r_{ij} = \frac{\sum\limits_{k} (a_{ik} - \mu_i) \sum\limits_{k} (a_{jk} - \mu_j)}{n\sigma_i \sigma_j}.$$

Outline

- The task of Community detection
 - Community Structure
 - Methods and algorithms
- Semi-average clustering criterion
 - Formulation
 - Greedy cluster extraction
 - Search Strategies
- Comparative coefficients
 - Quality measures
 - Scheme of experiments
 - Results

Quality measures

Ratio of correctly clustered vertices

$$\varphi^{\mathsf{CCV}} = \sum_{i=1}^{k_a} q_i / n, \tag{7}$$

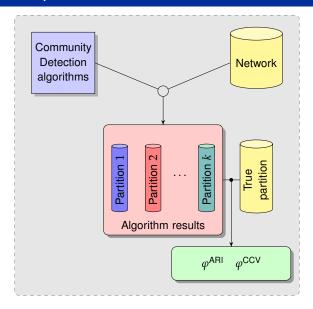
where q_i is the number of correctly clustered vertices of cluster C_i .

Adjusted Rand Index

$$Rand(X,Y) = \frac{a+d}{a+b+c+d} \to \varphi^{\mathsf{ARI}},$$
 (8)

- a # if pairs of vertices, joined by community both in X and Y
- b (c) # if pairs of vertices, found in the same community in X (Y) but in different in Y (X)
- *d* # if pairs of vertices, found in different communities in both partitions

Scheme of experiments



Algorithms

- EgdBtws Girvan and Newman EdgeBetweenness [2004]
- FastGreedy Girvan and Newman greedy Q optimization [2004]
- LeadEigen Newman spectral Q optimization [2006]

Using implementation in igraph library for python

Real networks

- Zackhary's Karate Club
- American Football League
- Dolphin's network

(a) Football

(b) Zackhary's karate club

Figure 2: Examples of real networks with known community structure

Zackhary's Karate Club

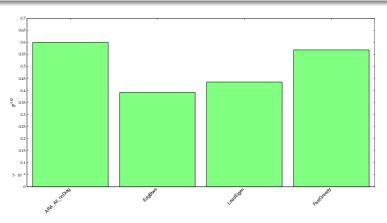


Figure 3: ARI index of obtained partitions

Zackhary's Karate Club

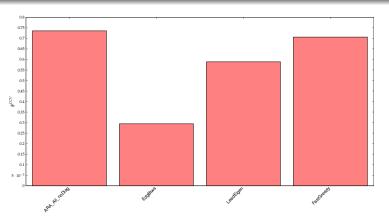


Figure 4: CCV of obtained partitions

American Football League

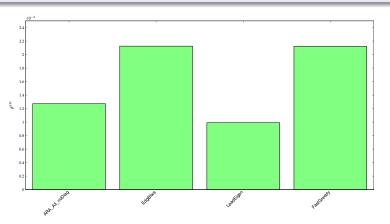


Figure 5: ARI index of obtained partitions

American Football League

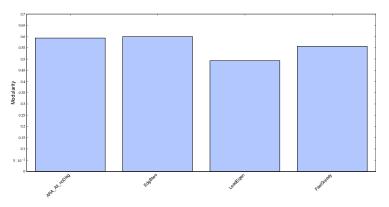


Figure 6: Modularity of obtained partitions

Generated networks

- Proposed in [Lancichinetti and Fortunato, 2009]
- Directed/Undirected, Weighted/Unweighted networks
- Many parameters
 - Topological mixing parameter $k_i^{(\text{in})} = (1 \mu_t)k_i$

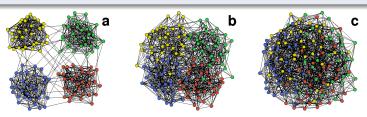


Figure 7 : 4-planted partition model for some μ_t

Generated networks

Parameter initialization

Standard parameters:

- Number of vertices 128
- Number of communities − 4
- Size of communities − 32
- Average vertex degree 16
- ullet Topological mixing $\mu_t [0.1 0.7]$

Generated networks

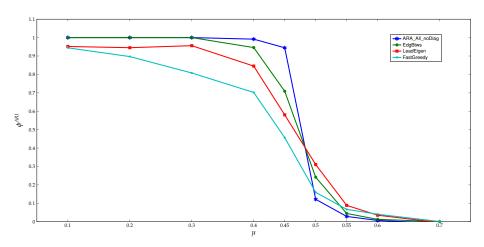


Figure 8 : Average ARI with change of μ

Generated networks

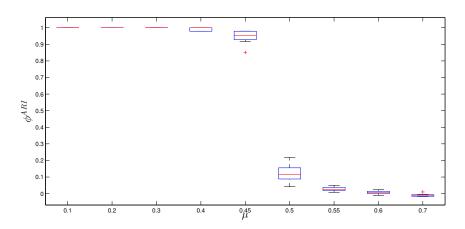


Figure 9 : Stability of obtained partitions μ

Conclusion

Main issues

- Can we speed-up?
- Apply on BIG networks?

That's all, folks!