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Binary matrix
A binary matrix is a matrix A such that Ai,j ∈ {0, 1}
What about a product of two binary matrices?

Example (
0 1
1 1

)
·
(

1 1
1 0

)
=
(

0 · 1 + 1 · 1 0 · 1 + 1 · 0
1 · 1 + 1 · 1 1 · 1 + 1 · 0

)
=
(

1 0
2 1

)

It does not seem right. . .
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Product of two binary matrices
We need another definition for a product of two binary matrices.

Definition (Product of two binary matrices)
Given an n× k matrix A and k ×m matrix B, the product A ◦B is defined as

(A ◦B)i,j =
k∨

l=1
Ail ·Blj

Example

(
0 1
1 1

)
·
(

1 1
1 0

)
=

(
0 · 1 ∨ 1 · 1 0 · 1 ∨ 1 · 0
1 · 1 ∨ 1 · 1 1 · 1 ∨ 1 · 0

)
=

=
(

max(0 · 1, 1 · 1) max(0 · 1, 1 · 0)
max(1 · 1, 1 · 1) max(1 · 1, 1 · 0)

)
=
(

1 0
1 1

)
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Binary matrix decomposition
In general: a matrix decomposition is a factorization of a matrix into a product of
matrices.

Binary matrix decomposition is a factorization of a matrix into a product of (two)
binary matrices.

Problem description: The input is a n×m binary matrix I and the output are
n× k binary matrix A and k ×m binary matrix B such that I = A ◦B and k is
as small as possible.

k is number of factors and it is well-known Schein rank in boolean matrix theory.
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Interpretation of a binary matrix decomposition
What is the interpretation of decomposition of a binary matrix? (rows = patients,
columns = symptoms, 1 = patient has symptom)
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Table 1

Symptoms and their descriptions.

Symptom Symptom description

1 headache
2 fever
3 painful limbs
4 swollen glands in neck
5 cold
6 stiff neck
7 rash
8 vomiting

Table 2

Formal concepts of data given by patients and their symptoms.

ci ⟨Ai , Bi⟩

c0 ⟨{}, {1,2,3,4,5,6,7,8}⟩
c1 ⟨{1,5,9,11}, {1,2,3,5}⟩
c2 ⟨{2,4,12}, {1,2,6,8}⟩
c3 ⟨{3,6,7}, {2,5,7}⟩
c4 ⟨{3,6,7,8,10}, {7}⟩
c5 ⟨{1,3,5,6,7,9,11}, {2,5}⟩
c6 ⟨{1,2,4,5,9,11,12}, {1,2}⟩
c7 ⟨{1,2,3,4,5,6,7,9,11,12}, {2}⟩
c8 ⟨{1,2,3,4,5,6,7,8,9,10,11,12}, {}⟩

Fig. 1. Hasse diagram of concept lattice given by patients and their symptoms.
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⎠
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That is, rows correspond to patients, columns correspond to symptoms, Ii j = 1 if patient i has symptom j, and Ii j = 0 if
patient i does not have symptom j.

Our intention is to find a set F of factor concepts. That is, we want to find some F ⊆ B(X, Y , I) such that I = AF ◦ BF .
Let us first look at the concept lattice B(X, Y , I). B(X, Y , I) contains 9 formal concepts. That is B(X, Y , I) = {c0, . . . , c8} and

each ci is of the form ci = ⟨Ai, Bi⟩ where Ai ⊆ X is a set of patients, Bi ⊆ Y is a set of symptoms such that A
↑
i = Bi and

B
↓
i = Ai . That is, Bi is the set of all symptoms common to all patients from Ai , and Ai is the set of all patients sharing all

symptoms from Bi . All formal concepts from B(X, Y , I) are depicted in Table 2.
For instance, the extent A3 of the formal concept c3 consists of patients 3,6,7, and the intent B3 of c3 consists of

attributes 2,5,7. The concept lattice B(X, Y , I) equipped with a partial order ! (the subconcept-superconcept hierarchy)
can be visualized by its Hasse diagram. The Hasse diagram of B(X, Y , I) is shown in Fig. 1. We can see from the diagram
that, e.g., c3 ! c4, i.e., formal concept c4 is more general than formal concept c3. This is because the extent A3 of c3 is
contained in the extent A4 of c4, i.e. A3 ⊆ A4, meaning that each patient covered by c3 is also covered by c4. Equivalently,
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, BF =

⎛

⎝

1 1 1 0 1 0 0 0
1 1 0 0 0 1 0 1
0 1 0 0 1 0 1 0
0 0 0 0 0 0 1 0

⎞

⎠

and similarly for AF ′ and BF ′ . From the point of view of dimension reduction, instead in an 8-dimensional space of symp-
toms (as described by I), the patients are now described in a 4-dimensional space of disease-like concepts (as described by
AF ).

2.3. Transformations between attributes space and factors space

Let now I = A ◦ B be a decomposition of I such that A = AF and B = BF for a set F ⊆ B(X, Y , I) of formal concepts. For
every object i (1! i ! n) we can consider its representation in the m-dimensional Boolean space {0,1}m of attributes and
its representation in the k-dimensional Boolean space {0,1}k of factors. In the space of attributes, the vector representing
object i is the ith row Ii_ of I . In the space of factors, the vector representing i is the ith row Ai_ of A. We are going to
consider transformations between the space {0,1}m of attributes and the space {0,1}k of factors.

Let ! denote the componentwise partial order on the set {0,1}p of binary vectors, i.e. ⟨V1, . . . , V p⟩! ⟨W1, . . . ,Wp⟩ iff
V1 ! W1, . . . , V p ! Wp . Clearly, {0,1}p equipped with ! forms a Boolean lattice. We are going to consider the mappings

g : {0,1}m → {0,1}k and h : {0,1}k → {0,1}m defined for P ∈ {0,1}m and Q ∈ {0,1}k by

(

g(P )
)

l
=

m
∧

j=1

(Blj → P j), (2)

(

h(Q )
)

j
=

k
∨

l=1

(Ql · Blj), (3)

for 1 ! l ! k and 1 ! j ! m. Here, → denotes the truth function of classical implication (0 → 0 = 0 → 1 = 1 → 1 = 1,
1 → 0 = 0), · denotes the usual product, and

∧

and
∨

denote minimum and maximum, respectively. (2) says that the lth
component of g(P ) ∈ {0,1}k is 1 if and only if for every attribute j, P j = 1 for all positions j for which Blj = 1, i.e. the lth
row of B is included in P . (3) says that the jth component of h(Q ) ∈ {0,1}m is 1 if and only if there is factor l such that
Ql = 1 and Blj = 1, i.e. attribute j is a manifestation of at least one factor from Q .

The following theorem justifies (2) and (3).

Theorem 4. For i ∈ {1, . . . ,n},

g(Ii_) = Ai_ and h(Ai_) = Ii_.

That is, g maps the rows of I to the rows of A and vice versa, h maps the rows of A to the rows of I .

Proof. h(Ai_) = Ii_ follows directly from I = A ◦ B . To see g(Ii_) = Ai_, note first that since A = AF and B = BF , the lth
row Bl_ of B coincides with the characteristic vector c(Dl) of the intent Dl of a formal concept ⟨Cl, Dl⟩ ∈ F , and that the

lth column A_l of A coincides with the characteristic vector c(Cl). Therefore, using Cl = D
↓
l , we get

(

g(Ii_)
)

l
=

m
∧

j=1

(

Blj → (Ii_) j
)

=

m
∧

j=1

((

c(Dl)
)

j
→ Ii j

)

=
(

c
(

D
↓
l

))

i
=

(

c(Cl)
)

i
= Ail,

which proves the theorem. ✷

Note that it is essential for the previous theorem that the decomposition I = A ◦ B uses formal concepts as factors (in
fact, essential is that columns of A are extents of formal concepts). The following theorem shows the basic properties of g
and h.

Symptoms (columns):

1: headache 5: cold
2: fever 6: stiff neck
3: painful limbs 7: rash
4: swollen glands in neck 8: vomiting
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Maximal rectangle in a binary matrix
The question is: how to efficiently compute a decomposition of a binary matrix? We can
use approach using formal concept analysis.

Definition (Formal context)
The formal context is a tripple 〈X, Y, I〉, where X is a set of "objects", Y is a set of
"attributes" and I ⊆ X × Y is realation "object x has attribute y".

For example: X is a set of patients, Y is a set of symptoms.

Definition (Rectangle)
A rectangle R = 〈A, B〉 is a subset of I and there exists A ⊆ X, B ⊆ Y such that
R = A×B.

1 1 0 1
1 1 1 0
1 1 0 0


1 1 0 1

1 1 1 0
1 1 0 0


Rectangle Maximal rectangle
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Covering of a relation I

Let R be a set of all maximal rectangles in a context 〈X, Y, I〉. Clearly:⋃
R = I.

Problem: finding a minimal set F ⊆ R such that
⋃
F = I.

I =

1 1 0
1 1 0
0 1 1

 I1 =

1 1 0
1 1 0
0 1 1

 , I2 =

1 1 0
1 1 0
0 1 1

 , I3 =

1 1 0
1 1 0
0 1 1

 .

Now: I1 ∪ I2 ∪ I3 = I, but also I1 ∪ I3 = I. The set {I1, I3} is the minimal set which
covers a relation I.
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Algorithm for computing a decomposition of binary matrix
Let F = {〈A1, B1〉 , 〈A2, B2〉 , . . . , 〈Ak, Bk〉} is a minimal set of rectangles which covers
relation I of a context 〈X, Y, I〉. Then we can compute n× k matrix AF and k ×m
matrix BF :

(AF )il =
{

1 if i ∈ Al

0 if i ∈ Al

, (BF )lj =
{

1 if j ∈ Bl

0 if j ∈ Bl

The lth column of AF consists of the characteristic vector of Al and the lth row of BF
consists of the characteristic vector of Bl.
From the previous slide: we have

F = {I1, I3} = {〈{1, 2}, {1, 2}〉 , 〈{3}, {2, 3}〉}

We will get:

AF =

1 0
1 0
0 1

 , BF =
(

1 1 0
0 1 1

)
, AF ◦BF =

1 1 0
1 1 0
0 1 1


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Conclusion 1
The main point: if we have a minimal set F of rectangles which covers the relation I, we
can easily compute a decomposition of binary matrix I.
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Bit-vector encoding of partially ordered set
Partially ordered set (poset) is a reflexive, antisymmetric, and transitive binary relation.
How to represent a poset in a computer? How to efficiently compute if x ≤P y for a
poset P? Or x ∧P y? What is it good for?

Object

Collection Number String

ArraySetList Int

BigInt

Float

OrderedSet

Suppose we have a function with one parameter of type Collection. Can we call this
function with an argument of type OrderedSet? Is OrderedSet subtype of Collection?
In other words – is OrderedSet ≤ Collection?
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Bit-vector encoding
There are different approaches of how to encode a poset P . Some of them:
1 Graph representation: every element knows his upper/lower neighbors.
2 A binary matrix representation: Ai,j = 1 iff xi ≤ xj .
3 Bit-vector encoding.
4 . . .
Bit-vector encoding: we add a label (a set) to each element such that x ≤P y iff
label(x) ⊆ label(y).

•

• • •

• • • •

•

abcdef

cdef abef abcd

cf cde ef ac

de

abcde

bcde acd abd

bc bde cd ab

de
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Implementation of a bit-vector encoding
Bit-vector encoding is very easy to implement.
We can represent a (sub)set as a characteristic vector.
The query x ≤P y is then equal to a bit-operation x&y = x (logical and).

111111

001111 110011 111100

001001 001110 000011 101000

000110

Question: What is the size of a minimal set which can be used for encoding a poset P?

Lukas Havrlant (Palacký University, Olomouc) Bit-vector encoding and matrix decomposition 12th Februar 2014 12 / 20

http://www.inf.upol.cz


Order embedding

Definition (Order embedding)
Given two posets P and S, an order embedding f is a map f : P → S such that

∀x, y ∈ P : x ≤P y iff f(x) ≤S f(y).

{a, b, c}

{b, c} {a, c} {a, b}

{c} {b} {a}

∅

z

y x w

v

Figure : Example of an order embedding f from a poset P to a poset S
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2-dimension
For every set S the power set P(S) always forms a poset 〈P(S),⊆〉.

Definition (2-dimension)
The 2-dimension of a poset P is the size of a minimal set S such that P can be embedded
into a poset 〈P(S),⊆〉. We will denote it dim2 P .

The dim2 P is also equal to the size of a minimal set which can be used for encoding a
poset P . We can see the embedding map as a label function.
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A poset as a context
We can convert a poset P = 〈P,≤〉 into a formal context C = 〈P, P,≤〉.

z

y x w

v −→

z y x w v
z 1 0 0 0 0
y 1 1 0 0 0
x 1 0 1 0 0
w 1 0 0 1 0
v 1 1 1 1 1

A wild idea: Is it possible to compute a 2-dimension of P using a set of rectangles
covering the relation ≤? (Spoiler: no!)
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Concept lattice
Let C = 〈X, Y, I〉 be a formal context and B(X, Y, I) the set of all maximal rectangles in
C. B(X, Y, I) with operation ≤C defined as

〈A, B〉 , 〈C, D〉 ∈ B(X, Y, I) : 〈A, B〉 ≤C 〈C, D〉 iff A ⊆ C (or B ⊇ D)

forms a (concept) lattice 〈B(X, Y, I),≤C〉.

Theorem
For a poset P = 〈P,≤〉:

dim2 P = dim2 〈B(P, P,≤),≤C〉

Corollary: We can compute dim2 〈B(P, P,≤),≤C〉 (or B(P, P,≤), in short) instead of
dim2 P.
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Ferrers 2-dimension

Definition (Ferrers 2-dimension)
Let L = 〈B(X, Y, I),≤C〉 be a concept lattice. Let R be a minimal set of maximal
rectangles which covers a relation X × Y \ I. Then Ferrers 2-dimension of a lattice L is
|R|. We will denote it fdim2 C.

Ferrers 2-dimension = number of maximal rectangles which cover "a complementary
matrix" (= zeros, not ones). Example:

z y x w v
z 1 0 0 0 0
y 1 1 0 0 0
x 1 0 1 0 0
w 1 0 0 1 0
v 1 1 1 1 1

This matrix has Ferrers 2-dimension 3, because we need 3 rectangles to cover "zeros".

Lukas Havrlant (Palacký University, Olomouc) Bit-vector encoding and matrix decomposition 12th Februar 2014 17 / 20

http://www.inf.upol.cz


2-dimension and Ferrers 2-dimension
(It’s not a surprise that. . . )

Theorem
For a poset P = 〈P,≤〉:

dim2 P = fdim2 B(P, P,≤).

Proof.
Ten pages in FCA by Ganter&Wille. . .
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Conclusion 2
1 The size of a minimal set for encoding a poset P is equal to dim2 P .
2 dim2 P = fdim2 B(P, P,≤).
3 fdimB(P, P,≤) is equal to a size of a minimal set of rectangles R which cover

complementary relation >.
4 From conclusion 1: the set R can be used to decompose a binary matrix >

Final conclusion: The size of a minimal set for encoding a poset P is equal to Schein rank
of a matrix >. (Schein rank = number of factors in the decomposition)

In progress: It should be possible to compute an encoding of a poset P using algorithms
for decomposition matrix.
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Thank you for your attention!
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