Towards the efficient estimation of ECM parameters

Ekaterina Zagainaia

LIMOS Under the supervision of: Violaine Antoine, Engelbert Mephu Nguifo

Content

- Introduction
- The methods of clusterization
- Evidential c-means
- Intelligent ECM
- Criterias for determining k
- Conclusion

- ECM (Evidential c-means) is a variant of *k*-means that generates a *credal partition*.
- Such partition, based on the theory of *belief function*, enables to handle ambiguous objects and outliers by assigning a degree of belief on subsets of clusters.
- It brings richer information about the class membership of an object than hard, fuzzy or possibilistic partition unfortunately at the cost of a higher complexity.
- Similarly to *k*-means, the number of clusters c has to be supplied by an expert.

- This paper proposes a new method to efficiently determine c and the associated subsets.
- Promising results have been obtained on experimental toy data.

The methods of clusterization

- Data clustering is one of the most popular method in data analysis. It enables to assign objects into groups of similar objects.
- There exists a wide range of algorithms able to perform this task:
 - k-means algorithm
 - Intelligent k-means (IK-means) was proposed to select the correct number of clusters in k-means. IK-means is fast and deterministic, but it may drastically overestimate the number of clusters.
 - The *k*-means algorithm is a method that generate a *crisp partition*. In practice, there always exists outliers and objects located between two or more classes. A crisp partition is not suitable in these type of situations.

- The theory of *belief functions*, and particularly the notion of *credal partition* enables us to represent the partial knowledge about objects.
- It allows to represent a wide range of situations concerning the class membership of an object.
- Algorithms returning a credal partition are referred to as *evidential clustering algorithms* (for example, ECM: Evidential c-means).
- At the same time these algorithms imply a higher complexity with the respect to c.

- The theory of *belief functions* is a theoretical framework for dealing with unreliable and partial knowledge.
- Let Ω be a finite set called frame of discernment.
- A *belief assignment* (bba), defined as a mass function $m : 2^{\Omega} \rightarrow [0, 1]$ represents partial knowledge regarding the actual value taken by a variable y.

• This mass function corresponds to:
$$\sum_{A \subseteq \Omega} m(A) = 1$$

- $\Omega = \{\omega_1, \ldots, \omega_c\}$ is the set of classes and y corresponds to the real class taken by an object.
- A credal partition is the concatenation of the bbas of each object.

Example

ECM makes possible to model all situations from full certainty to complete ignorance concerning the class of every object.

A	$m_1(A)$	$m_2(A)$	$m_3(A)$	$m_4(A)$	$m_5(A)$
Ø	1	0	0	0	0
$\{\omega_1\}$	0	0	0	0.4	0
$\{\omega_2\}$	0	1	0	0.3	0
$\{\omega_1,\omega_2\}$	0	0	0	0	0
$\{\omega_3\}$	0	0	0.2	0.3	0
$\{\omega_1,\omega_3\}$	0	0	0.3	0	0
$\{\omega_2,\omega_3\}$	0	0	0	0	0
$\{\Omega\}$	0	0	0.5	0	1

TAB. 1 – Example of credal partition.

The hard credal partition is obtained using the rule of maximum on the bbas.

Summary

- ECM is a variant of *k*-means that generates a credal partition instead of a crisp partition.
- It allows a better modeling and a more detailed description of complex data (for example, in the domain of medicine).
- The method has a *linear complexity* with the respect to the number of objects and the number of attributes.
- And it has an *exponential complexity* with the respect to the number of clusters.
- If c is the number of clusters, there exists 2^c subsets and as many values to find for a bba associated to an object.
- <u>The computation time is then mainly slowed down by the number of subsets</u>.

Previous development

Proposals:

- Masson and Denœux (2008) suggest to reduce the number of subsets to Ω and those having a cardinality less or equal to two.
- Also they propose to automatically find the number of clusters by computing a validity index for different values of c.

Shortcomings:

- The limitation to specific subsets is arbitrary.
- The above method to choose c is slow with the respect to the time, since it implies to run several times ECM.

Intelligent ECM

- In this work we propose to automatically find the number of clusters and the most important subsets before running ECM, in the manner of IK-means with *k*-means.
- *I* the set of current objects
- A the set of ambiguous objects
- The centroid of the all dataset is referred to as g and $\omega_{\rm g}$ corresponds to its associated cluster.
- For a new cluster ω_t , we define S_t the set of objects in $\{\omega_t\}$ and A_t the set of objects in $\{\omega_g, \omega_t\}$.

Intelligent ECM

FIG. 1 – Intelligent ECM.

Criterias for determining k

The within-cluster dispersion

Criterias for determining k

Removing insignificant clusters

# of	2	3	4	5 (4)	6 (4)	7 (4)
clusters						
W(K)	1.0e+05 *					
	3.3351	1.6478	0.0789	0.0789	0.0789	0.0789
H(K)	1.0e+04 *					
	0.4093	7.9483	0	0	0	-

Criterias for determining k

- When the value of c has been defined, subsets associated to the remaining clusters are selected using the set of ambiguous objects A.
- Finally, a normal execution of ECM is carried out with c and the selected subsets.
- Result of experiment: ٠

Result of clusterization

12

Conclusion

- We have developed a new method called Intelligent ECM to estimate the parameters needed for the ECM algorithm.
- Adopting such method makes it possible to avoid arbitrary choice of subsets.
- In addition, the new algorithm, choosing in a fast and smart way the optimal number of clusters for overlapping data sets, is proposed.
- The within-cluster dispersion can be used to determine the number of clusters for any type of the data, but with higher time cost.
- The proposed algorithm, Intelligent ECM can be applied on larger dataset than the classical ECM method.

Conclusion

- Future work consists in analyzing the behavior of Intelligent ECM on various datasets.
- In addition, several adjustments of the method have to be explored in order to make it more robust.
- For example, the determination of the objects belonging to a cluster or a subset can be modified.