. O R ’ ﬁ
iy o LY o - L

L iy W "‘*_ '.'..-l

& __:‘._ II". s -

"=
i
T
g . e ww, Fy amly .
] e b i..?i;l' [ .,'ll' R ame
at atany v T "":'.'r
‘..' LI L T AGEr [ T
G& T A ot
[l -"l"'\-:-\,._rr_'..'--l-“ o WL w
P ™ B R gy W o
'.:J.r :;:-:_-:_— q.!__: I.r.:' i3 ':-l-':.-l g
¥ = "l'"‘"'l-- P ' n R 1
' o e AR e e vt o
e L L Y -n.'l-".ﬂ'rl-. .
LIMOS B RS e e
Y ‘_:‘ . :.;' w e .l!- - .:.L r.:* .a-
¥ R R o
ol g iy o
L =i X l. o AE W
:'-r;:, . ]
L g oy

UMR 6158 CNRS b A
i AR

Grapﬁ
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by means of substitution
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Frequent subgraphs

Problem description

» Given a collection of graphs or a single massive graph find all frequent
subgraphs.

» A subgraph is frequent if:
o @Graph set D = {G1, G2, ...,Gn}
> Support(g) = number of Gi in D where g appears
o g is frequent if : its support >= minimum support threshold

» Frequent subgraphs are useful at : characterizing graph sets, classifying and
clustering graphs, graph compression, outliers discovery, ..




Frequent subgraphs

Problems to resolve

4

Subgraph Isomorphism: For two labeled graphs g and g, a subgraph isomorphism is an
myective functiont : V (g) — V (g), L.e., Vv € V (g), I(v) =1(f(v)), and, V(u, v) € E(g), (f(u),
f(v)) € E(g) and1(u, v) =1'(f(v), {(v)), wherel and" are the labeling functions of'g and g',
respectively. f is called an embedding of g in g'.

Frequent subgraph: Given a labeled graph dataset D = {G1,G2, . .. ,Gn} and a subgraph g,
the supporting graph set of'g is Dg = {Gilg € Gi,Gi1 € D}. The support of g is support(g) =
|Dgl/IDI|. A frequent graph is a graph whose support is no less than a minimum support
threshold, min sup.

Anti-Monotonicity: Anti-monotonicity means that a size-k subgraph is frequent only if all of
its subgraphs are frequent. This property is crucial to confine the search space of frequent
subgraph mining.




Frequent subgraphs discovery approaches

» ILP approaches

WARMR : King R.D., Srinivasan A. and Dehaspe L. (J. of Computer-Aided Molecular Design 2001)
FARMER : Nijssen, S. and Kok, J. [JCAI 2001

A 4

Apriori based approaches

AGM/AcGM : Inokuchi et al (PKDD 2000)
FFSM : Huan et al (ICDM 2003)

A 4

Pattern growth based approaches

Gspan : Yan and Han (ICDM 2002)
Gaston : Nijssen and Kok (KDD 2004)

Closed subgraphs
CloseGraph: Yan, X. and Han, J. (KDD 2003)

» Maximal subgraphs

SPIN : Huan et al (KDD 2004)
Margin

v




Frequent subgraph issues

: Indexing
' o o O |
: Oo 8 OC? : / Clustering
S L C§>Q O g ! > —— Classification
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! O Cg) O : ™~ .
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Graph set Frequent Mining tasks
subgraphs
Issues: (Pattern set)
% Threshold setting % No guarantee of the discovered
x Exponential Pattern Set subgraphs quality

subgraphs!

¥ More information # more knowledge



Patterns selection

. Indexing
O I

% ® | / Clustering
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o OO eC — — Classification
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Frequent Relevant frequent
subgraphs subgraphs

Aims:

» Decreasing the exponential number of discovered frequent subgraphs
» Enhancing (or at least maintaining) the quality of the pattern set

» Find relevant frequent subgraphs such that each frequent subgraph is close to one of the
representative patterns




Frequent subgraphs selection by means of
substitution matrix

Proteins -
»

o

<
>

1Ly

primary struclure
{aming acid sequence) sacondary slruclure

{a-helix)

From sequence (string of characters) = 3D structure (graph)



Frequent subgraphs selection by means of
substitution matrix

»  During the evolution, proteins go through changes, among them :
o Mutation : is a substitution that exchanges one amino acid to another

In literature, there exist substitution matrices expressing scores of substitution between
each possible pair of amino acids.
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Motifs selection by means of substitution
matrix

» DDSM: In [Saidi et al.: BMC bioinformatics, 2010] they proposed a new feature
extraction method for protein sequences which explored the phenomenon of amino
acids substitution to perform both a feature selection and dimension reduction.

|
O | O O
@ O I C% .Q
8 O | O
O O500 |
C?O%)OO%O | 5O
oi=le = ®0
O : O 50
Discovered Motifs clustering Relevant frequent
motifs motifs

» Keep only one motif for every set of substitutable motifs having the same length




Motifs selection by means of substitution

matrix
» Algorithm of DDSM

Begin
S :Set of motifs.
Divide S into a set of groups of motifs having the same size;
for each group M of S
Sort M by descending order of 7,,;

" for each motif M[/] (i from nto 1)
_ if P(M[1])=0 then
Pn(M) =1 — 1_[ b M[/] is a main motif;
=1 else
i =S (M[if, M[i]) / 212'21 ST (M[i], AA;) x € position of the first motif in M;
*  S(x, y)is the substitution score of the amino acid y by f?; KZE}I]I i\glgls] ti(t]u{ioll\]/[][f]tgrl)':j then
the amino acid x as it appears in the substitution M[j] is a main motif: 4
matrix. break: ’
*  St(x, y): positive substitution score. end if ’
« AAj:amino acid of index j among the 20 amino acids. end for
end if
end for

for each M[7] in S
1f M[ 1] is not a main motif then
delete M| 1];
end if
end for

end for
fin.
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Motifs selection by means of substitution

matrix

Main algorithm of DDSM Begin Shape verification

S :Set of motifs.
Divide S into a set of groups of motifs having the same size;
— for each group M of S
P ranking Sort M by descending order of 7,,;
m for each motif M[/] (i from nto 1)
if P, (M[1])=0 then
M[{] is a main motif;
else
x € position of the first motif in M;
Motifs selection — for each M[j] (j from xto 1)
1f M[/] substitute M| /] or /=7 then
Substitution clustering  myj] is a main motif;
break;
end if
end for
end if
end for
for each M[7] in S
if M[4] is not a main motif then — Pruning
delete M| 1];
end if
end for
end for
fin.

11



Limits of DDSM and enhancements

Shape isomorphism: we consider only the structure i.e. only nodes and edges, labels are
ignored.

» DDSM:
> Not universal: deals only with protein sequences i.e. strings of characters
> Does not deal with more complex structures such as trees of graphs
> Does not take into account spatial links between distant elements/nodes (amino
acids)

NAVT => NAIT

» New Approach:

> Deals with more complex structures : dedicated to protein’s 3D structure (graphs)

> Takes into account spatial links
> Deals also with protein sequences since a sequence can be also considered as
graph i.e. paths

NAVT &  NAIT  + @
5 O @O 0

12




Limits of DDSM and enhancements

Shape isomorphism

» DDSM

> We need only to verify motif size
» With graphs:

> We need to verify both nodes and edges i.e.

» In order perform a shape isomorphism between two frequent
subgraph, we benefit from the canonical order achieved during the
candidate generation in the frequent subgraph generation process.
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Limits of DDSM and enhancements

Motifs selection

» P, ranking
o Formula : Same as DDSM

° DDSM : (if Pm(M[i])=0 then {M[i] is a main motif;}) €= This neglect the substitution between some motifs.

example: PPG PPN

» Substitution based clustering:
A, B and C three motifs having the same shape. P,(A)> P,(B)> P_(C) :

°  Independence A substitute B
C substitute XX

A substitute B
B substitute C
A substitute C

o Inclusion

A

o Intersection

A substitute B
' B substitute C

14



Limits of DDSM and enhancements

Intersection
» DDSM
Dependent motifs :

»  New approach

> Considering more distinct motifs, hence better description : independent vectors

Which approach keeps less motifs !!!
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Limits of DDSM and enhancements

Substitution Kernel function
Considering two motifs M and M’, having the same shape. M substitute M’ iff.:
= S(M[i], M’[i])>0,i=1.n
=  SP(M,M’) > Threshold

> Old kernel function

o SP(M,M") = S,,(M, M)/ S,,(M, M)

S,, (M, M) is the score of substitution of M by M, S, (X, ¥)= Yi-; S(X[4, Y1)
Express similarity between M and M’

> New kernel function
o SP(M,M") =TI, P,(M,M")
P;(M,M") = S(M[i], M'[i]) / X2, ST(M[i], A4;)

Express the evolution probability of M to M’ among all the evolution possibilities

16



Frequent subgraphs selection by means of
substitution matrix

Main algorithm

Begin
S :Set of motifs.
Divide S into a set of groups of motifs having the same size;

— _ for each group M of S
P, ranking Sort M by descending order of P,;
for each motif M[7] (i from 1 to n-1)

if P (M[1])=0 then
continue; Shape verification
end if
for each M[j] (y from i+1to n)
if shape(M[1]) # shape(M[J]) then
continue;
end if
Substitution clustering if M[] substitute M[/] then
- delete M[j];
end if ST -
end for Pruning
end for

end for
fin.

Motifs selection
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