

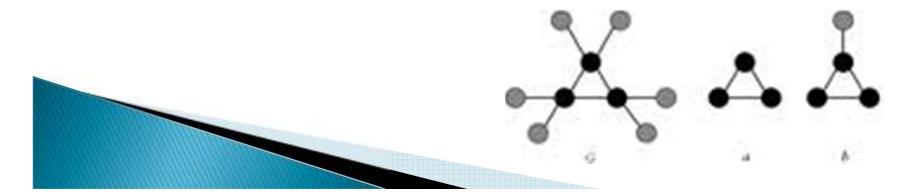
Presented by:

PhD superviser : Prof. Engelbert MEPHU NGUIFO

Frequent subgraphs

Problem description

- Given a collection of graphs or a single massive graph find all frequent subgraphs.
- A subgraph is frequent if:
 - Graph set $D = \{G1, G2, ..., Gn\}$
 - Support(g) = number of Gi in D where g appears
 - g is frequent if : its support >= minimum support threshold
- Frequent subgraphs are useful at : characterizing graph sets, classifying and clustering graphs, graph compression, outliers discovery, ...



Frequent subgraphs

Problems to resolve

- Subgraph Isomorphism: For two labeled graphs g and g', a subgraph isomorphism is an injective function f: V (g) → V (g'), i.e., ∀v ∈ V (g), l(v) = l'(f(v)); and, ∀(u, v) ∈ E(g), (f(u), f(v)) ∈ E(g') and l(u, v) = l'(f(u), f(v)), where l and l' are the labeling functions of g and g', respectively. f is called an embedding of g in g'.
- Frequent subgraph: Given a labeled graph dataset D = {G1,G2,...,Gn} and a subgraph g, the supporting graph set of g is Dg = {Gi|g ⊆ Gi,Gi ∈ D}. The support of g is support(g) = |Dg|/|D|. A frequent graph is a graph whose support is no less than a minimum support threshold, min sup.
- Anti-Monotonicity: Anti-monotonicity means that a size-k subgraph is frequent only if all of its subgraphs are frequent. This property is crucial to confine the search space of frequent subgraph mining.

Frequent subgraphs discovery approaches

ILP approaches

- WARMR : King R.D., Srinivasan A. and Dehaspe L. (J. of Computer-Aided Molecular Design 2001)
- FARMER : Nijssen, S. and Kok, J. IJCAI 2001

• ...

Apriori based approaches

- AGM/AcGM : Inokuchi et al (PKDD 2000)
- FFSM : Huan et al (ICDM 2003)

• ...

Pattern growth based approaches

- Gspan : Yan and Han (ICDM 2002)
- Gaston : Nijssen and Kok (KDD 2004)

• ...

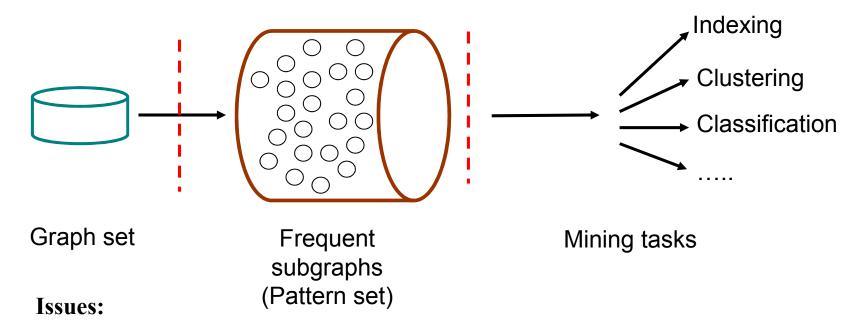
Closed subgraphs

• CloseGraph: Yan, X. and Han, J. (KDD 2003)

Maximal subgraphs

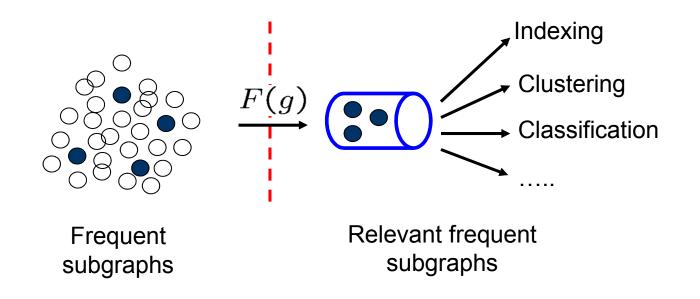
- SPIN : Huan et al (KDD 2004)
- Margin

Frequent subgraph issues



- **×** Threshold setting
- **×** Exponential Pattern Set
- **×** Interpretation problem
- ***** More information \neq more knowledge
- No guarantee of the discovered subgraphs quality
- An n-edge frequent graph may have 2n subgraphs!

Patterns selection

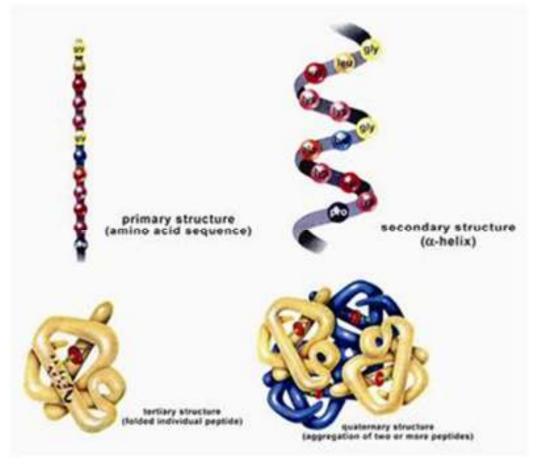


Aims:

- Decreasing the exponential number of discovered frequent subgraphs
- Enhancing (or at least maintaining) the quality of the pattern set
- Find relevant frequent subgraphs such that each frequent subgraph is close to one of the representative patterns

Frequent subgraphs selection by means of substitution matrix

Proteins

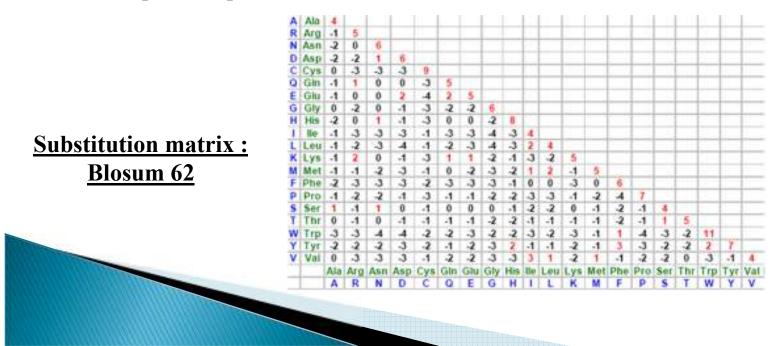


From sequence (string of characters) \rightarrow 3D structure (graph)

Frequent subgraphs selection by means of substitution matrix

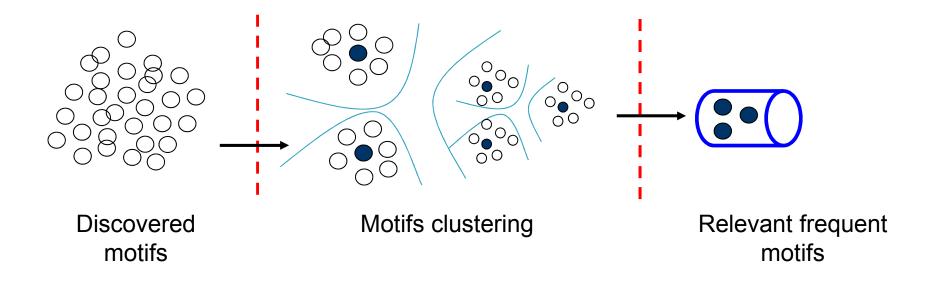
- During the evolution, proteins go through changes, among them :
 - **Mutation** : is a substitution that exchanges one amino acid to another

In literature, there exist substitution matrices expressing scores of substitution between each possible pair of amino acids.



Motifs selection by means of substitution matrix

DDSM: In [Saidi et al.: BMC bioinformatics, 2010] they proposed a new feature extraction method for protein sequences which explored the phenomenon of amino acids substitution to perform both a feature selection and dimension reduction.



• Keep only one motif for every set of substitutable motifs having the same length

Motifs selection by means of substitution matrix

Algorithm of DDSM

$$P_m(M) = 1 - \prod_{i=1}^{\kappa} P_i$$
$$P_i = S(M[i], M[i]) / \sum_{i=1}^{20} S^+(M[i], AA_i)$$

- *S*(*x*, *y*) is the substitution score of the amino acid y by the amino acid x as it appears in the substitution matrix.
- S+(x, y): positive substitution score.
- AAj: amino acid of index j among the 20 amino acids.

Begin S :Set of motifs. Divide S into a set of groups of motifs having the same size; for each group M of S Sort M by descending order of P_m ; for each motif M[*i*] (i *from n* to 1) if $P_m(M[i])=0$ then M[*i*] is a main motif; else $x \leftarrow$ position of the first motif in M; for each M[j] (*j from x* to *i*) if M[i] substitute M[i] or i=i then M[j] is a main motif; break; end if end for end if end for for each M[*i*] in S if M[*i*] is not a main motif then delete M[*i*]; end if end for end for fin.

Motifs selection by means of substitution matrix

<u>Main algorithm of DDSM</u>		Begin	Shape verification
		S :Set of motifs.	K
		Divide S into a set of groups of m for each group M of S	
Motifs selection –	P_m ranking	Sort M by descending order of P_m ;	
		for each motif $M[i]$ (i <i>from n</i> to 1)	
		if $P_m(M[i])=0$ then	
	M[i] is a main motif;		
	else		
	$x \leftarrow$ position of the first motif in M;		
	for each M[j] (<i>j</i> from x to i)		
	if $M[j]$ substitute $M[i]$ or $j=i$ then		
	Substitution clustering $M[j]$ is a main motif;		
	break;		
	end if		
	end for		
	end if		
		end for	
for each M[<i>i</i>] in S			
if M[<i>i</i>] is not a main motif then - Pruning			🛛 🗁 Pruning
		delete M[<i>i</i>];	
		end if	
	end for		
	end for		
		fin.	

<u>Shape isomorphism</u>: we consider only the structure i.e. only nodes and edges, labels are ignored.

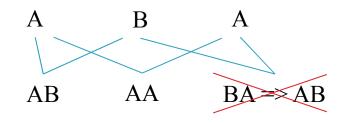
- **DDSM:**
 - Not universal: deals only with protein sequences i.e. strings of characters
 - Does not deal with more complex structures such as trees of graphs
 - Does not take into account spatial links between distant elements/nodes (amino acids)
 - NAVT → NAIT

New Approach:

- Deals with more complex structures : dedicated to protein's 3D structure (graphs)
- Takes into account spatial links
- Deals also with protein sequences since a sequence can be also considered as graph i.e. paths

Shape isomorphism

- **DDSM**
 - We need only to verify motif size
- With graphs:
 - We need to verify both nodes and edges i.e.
- In order perform a shape isomorphism between two frequent subgraph, we benefit from the canonical order achieved during the candidate generation in the frequent subgraph generation process.



Motifs selection

P_m ranking

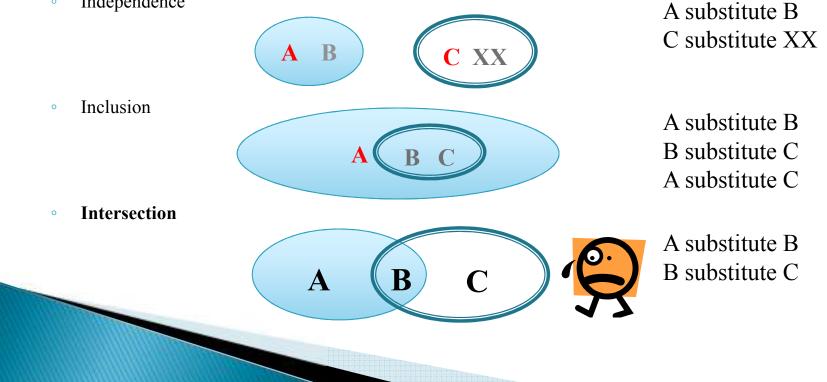
Formula : Same as DDSM 0

DDSM : (if Pm(M[i])=0 then $\{M[i] \text{ is a main motif};\}$) \leftarrow This neglect the substitution between some motifs. **PPG** example: **PPN**

Substitution based clustering:

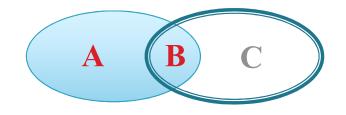
A, B and C three motifs having the same shape. $P_m(A) > P_m(B) > P_m(C)$:

Independence 0



Intersection

DDSM



- Dependent motifs
- New approach

• Considering more distinct motifs, hence better description : independent vectors

Which approach keeps less motifs !!!

Substitution Kernel function

Considering two motifs M and M', having the same shape. M substitute M' iff.:

- $S(M[i], M'[i]) \ge 0$, i = 1.. n
- $SP(M,M') \ge Threshold$

• Old kernel function

• $SP(M, M') = S_m(M, M) / S_m(M, M)$

 $S_m(M, M')$ is the score of substitution of M' by M, $S_m(X, Y) = \sum_{i=1}^n S(X[i], Y[i])$

Express similarity between M and M'

- <u>New kernel function</u>
- $SP(M, M') = \prod_{i=1}^{k} P_i(M, M')$
 - $P_i(M, M') = S(M[i], M'[i]) / \sum_{i=1}^{20} S^+(M[i], AA_j)$

Express the evolution probability of M to M' among all the evolution possibilities

Frequent subgraphs selection by means of substitution matrix

Main algorithm

