- Background
  - Graph mining
  - Cloud computing
  - Frameworks for large data processing in the cloud
  - Related works
- Proposed approach
  - System overview
  - Experiments
- Conclusion
  - Contributions
  - Prospects





### In this work

 We focus on distributed FSM techniques from large graph databases.

#### In this work

- We focus on distributed FSM techniques from large graph databases.
- Two crucial problems with existing approaches:
  - No data partitioning according to data characteristics.
  - 2 Construct the final set of frequent subgraphs iteratively.



Input data Distributed FSM Output data

- Background
- Proposed approachSystem overviewExperiments
- Conclusion

- Background
  - Graph mining
  - Cloud computing
  - Frameworks for large data processing in the cloud
  - Related works
- Proposed approach
  - System overview
  - Experiments
- 3 Conclusion
  - Contributions
  - Prospects

#### **Notations**

- $DB = \{G_1, \dots, G_K\}$  is a large scale graph database,
- $SM = \{M_1, \dots, M_N\}$  is a set of distributed machines,
- $\theta \in [0, 1]$  is a minimum support threshold,
- $Part(DB) = \{Part_1(DB), ..., Part_N(DB)\}$  is a partitioning of the database over SM such that
  - $Part_i(DB) \subseteq DB$  is a non-empty subset of DB,
  - $\bigcup_{i=1}^{N} \{Part_i(DB)\} = DB, and,$
  - $\forall i \neq j, Part_i(DB) \cap Part_j(DB) = \emptyset$ .

### Globally frequent subgraph

For a given minimum support threshold  $\theta \in [0, 1]$ , G' is globally frequent subgraph if  $Support(G', DB) \ge \theta$ .

### Globally frequent subgraph

For a given minimum support threshold  $\theta \in [0, 1]$ , G' is globally frequent subgraph if  $Support(G', DB) \ge \theta$ .

### Locally frequent subgraph

For a given minimum support threshold  $\theta \in [0, 1]$  and a tolerance rate  $\tau \in [0, 1]$ , G' is *locally frequent subgraph* at site i if  $Support(G', Part_i(DB)) \geq ((1 - \tau) \cdot \theta)$ .

#### Globally frequent subgraph

For a given minimum support threshold  $\theta \in [0, 1]$ , G' is globally frequent subgraph if  $Support(G', DB) \ge \theta$ .

#### Locally frequent subgraph

For a given minimum support threshold  $\theta \in [0, 1]$  and a tolerance rate  $\tau \in [0, 1]$ , G' is *locally frequent subgraph* at site i if  $Support(G', Part_i(DB)) \ge ((1 - \tau) \cdot \theta)$ .

#### Loss rate

Given  $S_1$  and  $S_2$  two sets of subgraphs with  $S_2 \subseteq S_1$  and  $S_1 \neq \emptyset$ , we define the loss rate in  $S_2$  compared to  $S_1$  by:

LossRate(
$$S_1, S_2$$
) =  $\frac{|S_1 - S_2|}{|S_1|}$ .

# System overview



## Approach overview

Two-step approach:

- Partitioning step,
- Mining step.

# Partitioning step



# Partitioning step

### Partitioning methods

Many partitioning methods are possible. We consider:

- MRGP: the default MapReduce partitioning method.
- OGP: a density-based partitioning method.

# Partitioning step

#### Partitioning methods

Many partitioning methods are possible. We consider:

- MRGP: the default MapReduce partitioning method.
- OGP: a density-based partitioning method.

#### **MRGP**

- Based on the size on disk.
- Map-skew problems (highly variable runtimes).
  - No data characteristics included.

#### **DGP**

- Based on graph density.
- May ensures load balancing among machines.
  - May exploit other data characteristics.

# Partitioning step: DGP method



#### **DGP** overview

Two-levels approach:

- Dividing the graph database into B buckets,
- Constructing the final list of partitions.

# Distributed FSM step

### Distributed FSM step

- A single MapReduce job.
  - Input: a set of partitions.
  - Output: the set of globally frequent subgraphs.

# Distributed FSM step

#### Distributed FSM step

- A single MapReduce job.
  - Input: a set of partitions.
  - Output: the set of globally frequent subgraphs.

### In the Mapper machine

- We run a subgraph mining technique on each partition in parallel.
- Mapper i produces a set of locally frequent subgraphs.
  - Pairs of  $\langle s, Support(s, Part_i(DB)) \rangle$ .

# Distributed FSM step

### Distributed FSM step

- A single MapReduce job.
  - Input: a set of partitions.
  - Output: the set of globally frequent subgraphs.

#### In the Mapper machine

- We run a subgraph mining technique on each partition in parallel.
- Mapper i produces a set of locally frequent subgraphs.
  - Pairs of  $\langle s, Support(s, Part_i(DB)) \rangle$ .

#### In the Reducer machine

- We compute the set of globally frequent subgraphs
  - Pairs of  $\langle s, Support(s, DB) \rangle$ .
  - No false positives generated.

- Background
  - Graph mining
  - Cloud computing
  - Frameworks for large data processing in the cloud
  - Related works
- Proposed approach
  - System overview
  - Experiments
- 3 Conclusion
  - Contributions
  - Prospects

### Implementation platform

- Hadoop 0.20.1 release, an open source version of MapReduce.
- A local cluster with five nodes.
  - A Quad-Core AMD Opteron(TM) Processor 6234 2.40 GHz CPU.
  - 4 GB of memory.
- Three existing subgraph miners: gSpan, FSG and Gaston.

### Implementation platform

- Hadoop 0.20.1 release, an open source version of MapReduce.
- A local cluster with five nodes.
  - A Quad-Core AMD Opteron(TM) Processor 6234 2.40 GHz CPU.
  - 4 GB of memory.
- Three existing subgraph miners: gSpan, FSG and Gaston.

#### **Datasets**

- Six datasets composed of synthetic and real ones.
- Different parameters such as: the number of graphs, the average size of graphs in terms of edges and the size on disk.

Table: Experimental data.

| Dataset | Type      | Number of graphs | Size on disk | Average size |
|---------|-----------|------------------|--------------|--------------|
| DS1     | Synthetic | 20,000           | 18 MB        | [50-100]     |
| DS2     | Synthetic | 100,000          | 81 MB        | [50-70]      |
| DS3     | Real      | 274,860          | 97 MB        | [40-50]      |
| DS4     | Synthetic | 500,000          | 402 MB       | [60-70]      |
| DS5     | Synthetic | 1,500,000        | 1.2 GB       | [60-70]      |
| DS6     | Synthetic | 100,000,000      | 69 GB        | [20-100]     |

### **Experimental protocol**

Three types of experiments:

- Quality:
  - MRGP vs. DGP.
- 2 Load balancing and execution time:
  - Performance evaluation tests.
  - Scalability tests.
- Impact of MapReduce parameters.

# **Experiments:** Quality



## Result quality

- Distributed FSM vs. classic one.
- Low values of loss rate with DGP.

# Experiments: Load balancing and execution time



#### Runtime and workload distribution

- DGP enhances the performance of our approach.
- Balanced workload distribution over the distributed machines.

# Experiments: Impact of MapReduce parameters



### Chunk size and replication factor

- High runtime values with small chunk size.
- The runtime is inversely proportional to the replication factor.

- Background
- 2 Proposed approach
- 3 Conclusion
  - Contributions
  - Prospects

- Background
  - Graph mining
  - Cloud computing
  - Frameworks for large data processing in the cloud
  - Related works
- Proposed approach
  - System overview
  - Experiments
- Conclusion
  - Contributions
  - Prospects

### Conclusion

#### At a glance

- A MapReduce-based framework for distributing FSM in the cloud.
  - Many partitioning techniques of the input graph database.
  - Many subgraph extractors.
- A data partitioning technique that considers data characteristics.
  - It uses the density of graphs.
  - Balanced computational load over the distributed machines.
- Experiment validation.

- Background
  - Graph mining
  - Cloud computing
  - Frameworks for large data processing in the cloud
  - Related works
- Proposed approach
  - System overview
  - Experiments
- Conclusion
  - Contributions
  - Prospects

# **Prospects**

### Improvements of the cloud-based FSM approach

- Different topological graph properties.
- Relation between database characteristics and the choice of the partitioning technique.

### Open questions

- What is the maximum number of buckets and/or partitions?
- What is the size of chunk to use in the partitioning step and in the distributed subgraph mining step?

# Thank You!

