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In this work

@ We focus on distributed FSM techniques from large graph
databases.
@ Two crucial problems with existing approaches:

@ No data partitioning according to data characteristics.
@ Construct the final set of frequent subgraphs iteratively.
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Problem formulation

@ DB={Gy,...,Gk } is a large scale graph database,
@ SM={M,,..., My} is a set of distributed machines,

@ 0 €[0,1] is a minimum support threshold,

@ Part(DB) = {Part{(DB),...,Party(DB)} is a partitioning of the
database over SM such that
@ Part(DB) C DB is a non-empty subset of DB,
o Ui {Part(DB)} = DB, and,
@ ViFj,Part(DB)N Part;(DB) = 0.

Aridhi et al., 2014 RFIA 2014 - Rouen



System overview

Proposed approach e

Problem formulation

Globally frequent subgraph
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Problem formulation

Globally frequent subgraph

For a given minimum support threshold 6 € [0, 1], G’ is globally
frequent subgraph if Support(G’',DB) > 6.

Locally frequent subgraph

For a given minimum support threshold 6 € [0, 1] and a tolerance rate
T € [0,1], G’ is locally frequent subgraph at site i if
Support(G’, Part;(DB)) > ((1 — 1) - 0).
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Problem formulation

Globally frequent subgraph

For a given minimum support threshold 6 € [0, 1], G’ is globally
frequent subgraph if Support(G’',DB) > 6.

Locally frequent subgraph

For a given minimum support threshold 6 € [0, 1] and a tolerance rate
T € [0,1], G’ is locally frequent subgraph at site i if
Support(G’, Part;(DB)) > ((1 — 1) - 0).

Loss rate

Given Sy and S, two sets of subgraphs with S, C Sq and Sy 70, we
define the loss rate in S, compared to S¢ by:

LossRate(S1,S,) = ‘81‘ 8_1 ‘82‘ .
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Partitioning step

Partitioning methods

Many partitioning methods are possible. We consider:
@ MRGP: the default MapReduce partitioning method.
@ DGP: a density-based partitioning method.
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Partitioning step

Partitioning methods

Many partitioning methods are possible. We consider:
@ MRGP: the default MapReduce partitioning method.
@ DGP: a density-based partitioning method.

o

VRGP

@ Based on the size on disk. @ Based on graph density.
@ Map-skew problems (highly ® May ensures load balancing
variable runtimes). among machines.
@ No data characteristics @ May exploit other data
included. ) characteristics. )
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Partitioning step: DGP method
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Distributed FSM step

@ A single MapReduce job.

@ Input: a set of partitions.
@ Output: the set of globally frequent subgraphs.
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Distributed FSM step

@ A single MapReduce job.

@ Input: a set of partitions.
@ Output: the set of globally frequent subgraphs.

In the Mapper machine

@ We run a subgraph mining technique on each partition in parallel.

@ Mapper i produces a set of locally frequent subgraphs.
@ Pairs of (s, Support(s, Partj(DB))).
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Distributed FSM step

Distributed FSM step

@ A single MapReduce job.

@ Input: a set of partitions.
@ Output: the set of globally frequent subgraphs.

In the Mapper machine
@ We run a subgraph mining technique on each partition in parallel.

@ Mapper i produces a set of locally frequent subgraphs.
@ Pairs of (s, Support(s, Partj(DB))).

In the Reducer machine

@ We compute the set of globally frequent subgraphs
@ Pairs of (s, Support(s,DB)).
@ No false positives generated.
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Experiments

Implementation platform

@ Hadoop 0.20.1 release, an open source version of MapReduce.

@ A local cluster with five nodes.

@ A Quad-Core AMD Opteron(TM) Processor 6234 2.40 GHz CPU.
@ 4 GB of memory.

@ Three existing subgraph miners: gSpan, FSG and Gaston.
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Experiments

Implementation platform

@ Hadoop 0.20.1 release, an open source version of MapReduce.

@ A local cluster with five nodes.

@ A Quad-Core AMD Opteron(TM) Processor 6234 2.40 GHz CPU.
@ 4 GB of memory.

@ Three existing subgraph miners: gSpan, FSG and Gaston.

@ Six datasets composed of synthetic and real ones.

@ Different parameters such as: the number of graphs, the average
size of graphs in terms of edges and the size on disk.

A
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Table: Experimental data.

Dataset Type Number of graphs | Size on disk | Average size
DS1 Synthetic 20,000 18 MB [50-100]
DS2 Synthetic 100,000 81 MB [50-70]
DS3 Real 274,860 97 MB [40-50]
DS4 Synthetic 500,000 402 MB [60-70]
DS5 Synthetic 1,500,000 1.2 GB [60-70]
DS6 Synthetic 100,000,000 69 GB [20-100]
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Experimental protocol

Three types of experiments:
@ Quality:
@ MRGP vs. DGP.
@ Load balancing and execution time:

@ Performance evaluation tests.
@ Scalability tests.

© Impact of MapReduce parameters.
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Experiments: Quality
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Experiments: Load balancing and execution time
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Runtime and workload distribution

@ DGP enhances the performance of our approach.

@ Balanced workload distribution over the distributed machines.
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Experiments: Impact of MapReduce parameters

2500 1600
1400
'ﬁ" 2000 'E' 1200 -
b
= -#=DS1 4 1000 =f=DS1
g 1500 -+=D52 E o =$=DS2
< 100" DS3 % - DS3
z \ “4=DS4 F  pem . i = s
s —— et =055 L - == DS5
N b—— TS0 ) — _
. - - £ B : A af in .- 0® O 4 &
10 20 30 40 50 &0 70 80 90 100 1 2 3 4 3
Chunk size (MB) Replication factor

Chunk size and replication factor

@ High runtime values with small chunk size.

@ The runtime is inversely proportional to the replication factor.
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Conclusion

At a glance

@ A MapReduce-based framework for distributing FSM in the cloud.

@ Many partitioning techniques of the input graph database.
@ Many subgraph extractors.
@ A data partitioning technique that considers data characteristics.

@ It uses the density of graphs.
@ Balanced computational load over the distributed machines.

@ Experiment validation.
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Prospects

Improvements of the cloud-based FSM approach

@ Different topological graph properties.

@ Relation between database characteristics and the choice of the
partitioning technique.

Open questions

@ What is the maximum number of buckets and/or partitions?

@ What is the size of chunk to use in the partitioning step and in the
distributed subgraph mining step?

\
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