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2012-2016 PhD in Paris (with C.Choffrut) and Milan (G.Pighizzini):
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I descriptional complexity of automata
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Graph Databases

I Graph databases
I Renewal with the noSQL trend, e.g., neo4j (SPARQL),

back-end for the rdf and semantic web
I more flexible than relational databases
I easier to distribute than relational databases

– notion of data locality, e.g., TitanDB, JanusGraph (gremlin)

I [Sun et al.’15 – SQLGraph: an efficient relational-based property graph]
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Running example: DBLP graph bipartite, undirected
#nodes: 5 750K
#edges: 12 200K
D size: 1.2Gb

Definition (Property Graph)
I a graph G = 〈V ,E 〉
I a mapping ppt : V 7→ D

with D, the set of documents 3 / 15



Paths

Definition (Regular Path Queries (RPQ))
Given
I a property graph G = 〈V ,E 〉 with ppt : V 7→ D;
I s, t ∈ V ;
I a regular expression e on D:

find a path π = s · v1 · · · v` · t such that π ∈ [|e|].

Examples (on DBLP property graph)
find path from given source to given target visiting
I only papers published after 2016
I only journal papers/not arxiv papers
I only French authors

I only paper whose abstract does not contain the word “experimental”
I papers in chronological order along the path
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Problem

How to find regular paths in
large property graphs efficiently?

from given source
to given target

G = 〈V , E 〉
ppt : V 7→ D

stored on disk

goal: find path from given source to given target by visiting few nodes

allowed:

I computation time when operating in RAM is “free”
I precomputed information (on disk): O(n · polylog(n)) space
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Outline

O(n · polylog(n))

a property graph G , ppt

〈G , ppt〉 + additional information

fast, using the additional information

〈G , ppt〉 + additional information
source s and target t
regular expression e

a path from s to t in G , matching e
6 / 15



Outline

1. Search paths
Bilateral Best First Search
Tradeoff between short path and efficiency

2. Learning graph embeddings

3. Experimental work
What to measure
Results

4. Future work
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From Regular Path Queries to classical path search

Given an graph exploration algorithm

we extend it to a graph regular exploration algorithm,

by exploring the direct product of the graph and an automaton

G

× A
not materialized
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Classical searches

I Breadth-First-Search: very bad (social networks have small diameter)

I Bilateral BFS: far better

I Best First Search algorithms: use heuristic information to guide the search

I A∗: if admissible heuristics (shortest path found)
I otherwise, a path may be found, not necessarily a shortest one
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Embeddings

Definition:
I µ : {nodes} 7→ Rd

I distance: ||µ(v)− µ(u)||

What is a good embedding? not clear.

Intuitively, we want that being close in the embedding
means being close in the graph topology
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Path searching

We assume an embedding µ : {nodes} 7→ Rd .

Algorithme : Best-First-Search
input : graph G, embedding µ, source s, target t

, parameter α

output : a path from s to t in G
Visited← {s};
while t not in Visited do

v← select best node in adherence of Visited ;

minimizing ||µ(t)− µ(v)||

·depth(v)α

maintain a layered DAG structure (depth);

add v to Visited ;
return a path from s to t in the subgraph induced by Visited ;

I depth(v): the shortest path length from s to v in the explored subgraph
I when α = 0: deep search – when α→∞: breadth first search
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v← select best node in adherence of Visited ;
minimizing ||µ(t)− µ(v)|| ·depth(v)α

maintain a layered DAG structure (depth);
add v to Visited ;

return a path from s to t extracted from the layered DAG;

I depth(v): the shortest path length from s to v in the explored subgraph
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Outline

1. Search paths
Bilateral Best First Search
Tradeoff between short path and efficiency

2. Learning graph embeddings

3. Experimental work
What to measure
Results

4. Future work
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Embeddings

I SVD: find eigenvectors of maximum eigenvalues
of the inverse Laplacian matrix

I Random walks + neural networks:
use learning techniques of natural language processing

I Uniform random walks: deepWalk (2011)
I Biased random walks: node2vec (2017)

I Landmarks select a small set of nodes, called landmarks
compute distances from any node to any landmarks

I already used to guide path searching on road networks (2007)
I and to estimate node distance in social networks (2009)

I many other embeddings to test. . .
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Experimental work

What to measure?
efficiency: how many nodes have been visited with respect to the

standard bilateral BFS?
quality: are the found paths much longer than the shortest paths?

13 / 15



Experimental results

method SVD node2vec deepWalk BFS

Powerlaw cluster graph (#nodes: 2000, #edges: 7979)
mean visited 65.06 76.36 64.13 86.76
score 74.99% 88.01% 73.92%
mean error 0.03% 0.05% 0.01%

Regular graph (#nodes: 2000, #edges: 7000)
mean visited 53.55 53.02 56.16 98.43
score 54.41% 53.86% 57.05%
mean error 0.02% 0.03% 0.0%

DBLP Graph (#nodes: 5 745K, #edges: 12 205K)
mean visited 1652.14 11632.02
score 14.2%
mean error 0.26%
median error 0.22%

14 / 15



Future work

I improve embeddings

I maintain embeddings under updates
– force algorithms, continuous learning, landmarks

I from filtered paths to data regular paths

I subgraph extraction using the embedding – convex closure

I index for searching nodes close to a point in the topology
– quadtree, octrees, k-d-tree (good for small dimensions)

– space-filling curves

I graph clustering

Thank you for your attention!

15 / 15



Future work

I improve embeddings

I maintain embeddings under updates
– force algorithms, continuous learning, landmarks

I from filtered paths to data regular paths

I subgraph extraction using the embedding – convex closure

I index for searching nodes close to a point in the topology
– quadtree, octrees, k-d-tree (good for small dimensions)

– space-filling curves

I graph clustering

Thank you for your attention!

15 / 15



Future work

I improve embeddings

I maintain embeddings under updates
– force algorithms, continuous learning, landmarks

I from filtered paths to data regular paths

I subgraph extraction using the embedding – convex closure

I index for searching nodes close to a point in the topology
– quadtree, octrees, k-d-tree (good for small dimensions)

– space-filling curves

I graph clustering

Thank you for your attention!

15 / 15



Future work

I improve embeddings

I maintain embeddings under updates
– force algorithms, continuous learning, landmarks

I from filtered paths to data regular paths

I subgraph extraction using the embedding – convex closure

I index for searching nodes close to a point in the topology
– quadtree, octrees, k-d-tree (good for small dimensions)

– space-filling curves

I graph clustering

Thank you for your attention!

15 / 15



Future work

I improve embeddings

I maintain embeddings under updates
– force algorithms, continuous learning, landmarks

I from filtered paths to data regular paths

I subgraph extraction using the embedding – convex closure

I index for searching nodes close to a point in the topology
– quadtree, octrees, k-d-tree (good for small dimensions)

– space-filling curves

I graph clustering

Thank you for your attention!

15 / 15



Future work

I improve embeddings

I maintain embeddings under updates
– force algorithms, continuous learning, landmarks

I from filtered paths to data regular paths

I subgraph extraction using the embedding – convex closure

I index for searching nodes close to a point in the topology
– quadtree, octrees, k-d-tree (good for small dimensions)

– space-filling curves

I graph clustering

Thank you for your attention!

15 / 15



Future work

I improve embeddings

I maintain embeddings under updates
– force algorithms, continuous learning, landmarks

I from filtered paths to data regular paths

I subgraph extraction using the embedding – convex closure

I index for searching nodes close to a point in the topology
– quadtree, octrees, k-d-tree (good for small dimensions)

– space-filling curves

I graph clustering

Thank you for your attention!

15 / 15



Future work

I improve embeddings

I maintain embeddings under updates
– force algorithms, continuous learning, landmarks

I from filtered paths to data regular paths

I subgraph extraction using the embedding – convex closure

I index for searching nodes close to a point in the topology
– quadtree, octrees, k-d-tree (good for small dimensions)

– space-filling curves

I graph clustering

Thank you for your attention!

15 / 15



More on DBLP graph

I sources: https://dblp.uni-trier.de/, January 16th, 2019 (2.4Gb xml file)
I graph: #nodes = 5 746 803 (2 152 092 authors) + json for each node,

#edges = 12 205 333, (199Mb for edges (txt); 1.2Gb for nodes + jsons)
I connected comp.: 57 186 – one large (5 500 304) and others small (< 101)
I degrees: avg=5.24769 . . ., med=3, stdev=10, max=1626,

repartition:
(log scale)

I distances (main cc, evaluated with sample > 110 000 pairs of nodes):
avg=10.9, med=11, stdev=2, max=27

I alternative encoding “nodes are authors, edges are journals” yields much
more edges (19 972 747)
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