Finding paths in large data graphs

Bruno Guillon Mikaela Keller Charles Paperman

UCA
LIMOS - UCA, Clermont-Ferrand
June 4, 2020

2012-2016 PHD in Paris (with C.Choffrut) and Milan (G.Pighizzini):

- nondeterministic two-way transducers and weighted automata
- rational transductions and beyond
- unary transducers
- descriptional complexity of automata

2016-2017 Postdoc in Warsaw (with M.Bojańczyk):

- extension of Monadic Second Order Logic on words
- regular transducers with origin semantics

2017-2018 Postdoc in Milan (with G.Pighizzini):

- reversibility in automata and transducers
- descriptional complexity of automata

2012-2016 PHD in Paris (with C.Choffrut) and Milan (G.Pighizzini):

- nondeterministic two-way transducers and weighted automata
- rational transductions and beyond
- unary transducers
- descriptional complexity of automata

2016-2017 Postdoc in Warsaw (with M.Bojańczyk):

- extension of Monadic Second Order Logic on words
- regular transducers with origin semantics

2017-2018 Postdoc in Milan (with G.Pighizzini):

- reversibility in automata and transducers
- descriptional complexity of automata

2012-2016 PHD in Paris (with C.Choffrut) and Milan (G.Pighizzini):

- nondeterministic two-way transducers and weighted automata
- rational transductions and beyond
- unary transducers
- descriptional complexity of automata

2016-2017 Postdoc in Warsaw (with M.Bojańczyk):

- extension of Monadic Second Order Logic on words
- regular transducers with origin semantics

2017-2018 Postdoc in Milan (with G.Pighizzini):

- reversibility in automata and transducers
- descriptional complexity of automata

2012-2016 PHD in Paris (with C.Choffrut) and Milan (G.Pighizzini):

- nondeterministic two-way transducers and weighted automata
- rational transductions and beyond
- unary transducers
- descriptional complexity of automata

2016-2017 Postdoc in Warsaw (with M.Bojańczyk):

- extension of Monadic Second Order Logic on words
- regular transducers with origin semantics

2017-2018 Postdoc in Milan (with G.Pighizzini):

- reversibility in automata and transducers
- descriptional complexity of automata

2012-2016 PHD in Paris (with C.Choffrut) and Milan (G.Pighizzini):

- nondeterministic two-way transducers and weighted automata
- rational transductions and beyond
- unary transducers
- descriptional complexity of automata

2016-2017 Postdoc in Warsaw (with M.Bojańczyk):

- extension of Monadic Second Order Logic on words
- regular transducers with origin semantics

2017-2018 Postdoc in Milan (with G.Pighizzini):

- reversibility in automata and transducers
- descriptional complexity of automata

November 2018-* Postdoc at InRIA Lille (with C.Paperman):

- algorithms for Regular Path Queries on large graphs
- work in progress

Graph Databases

- Graph databases
- Renewal with the noSQL trend, e.g., neo4j (SPARQL),
back-end for the rdf and semantic web
- more flexible than relational databases
- easier to distribute than relational databases
- notion of data locality, e.g., TitanDB, JanusGraph (gremlin)

Graph Databases

- Graph databases
- Renewal with the noSQL trend, e.g., neo4j (SPARQL),
back-end for the rdf and semantic web
- more flexible than relational databases
- easier to distribute than relational databases
- notion of data locality, e.g., TitanDB, JanusGraph (gremlin)
- [Sun et al.'15 - SQLGraph: an efficient relational-based property graph]

Running example: DBLP graph

Benjamin Monmege

Definition (Property Graph)

- a graph $G=\langle V, E\rangle$
- a mapping ppt: $V \mapsto \mathbb{D}$ with \mathbb{D}, the set of documents

Alain Finkel Jérôme Leroux

Paths

Definition (Regular Path Queries (RPQ))

Given

- a property graph $G=\langle V, E\rangle$ with ppt : $V \mapsto \mathbb{D}$;
- $s, t \in V$;
- a regular expression e on \mathbb{D} :
find a path $\pi=s \cdot v_{1} \cdots v_{\ell} \cdot t$ such that $\pi \in[|e|]$.

Paths

Definition (Regular Path Queries (RPQ))

Given

- a property graph $G=\langle V, E\rangle$ with ppt : $V \mapsto \mathbb{D}$;
- $s, t \in V$;
- a regular expression e on \mathbb{D} :
find a path $\pi=s \cdot v_{1} \cdots v_{\ell} \cdot t$ such that $\pi \in[|e|]$.

Examples (on DBLP property graph)
find path from given source to given target visiting

- only papers published after 2016
- only journal papers/not arxiv papers
- only French authors
- only paper whose abstract does not contain the word "experimental"

Paths

Definition (Regular Path Queries (RPQ))

Given

- a property graph $G=\langle V, E\rangle$ with ppt : $V \mapsto \mathbb{D}$;
- $s, t \in V$;
- a regular expression e on \mathbb{D} :
find a path $\pi=s \cdot v_{1} \cdots v_{\ell} \cdot t$ such that $\pi \in[|e|]$.

Examples (on DBLP property graph)
find path from given source to given target visiting

- only papers published after 2016
- only journal papers/not arxiv papers
- only French authors
- only paper whose abstract does not contain the word "experimental"
- papers in chronological order along the path

How to find regular paths in

 large property graphs efficiently? $\longrightarrow \left\lvert\, \begin{aligned} & G=\langle V, E\rangle \\ & \mathrm{ppt}: V \stackrel{D}{\mapsto}\end{aligned}\right.$
How to find regular paths in

 large property graphs efficiently?
How to find regular paths in

 large property graphs efficiently?
How to find regular paths in

 large property graphs efficiently?
goal: find path from given source to given target by visiting few nodes

Problem

How to find regular paths in

 large property graphs efficiently?
goal: find path from given source to given target by visiting few nodes allowed:

- computation time when operating in RAM is "free"

Problem

from given source

to given target

How to find regular paths in

 large property graphs efficiently?
goal: find path from given source to given target by visiting few nodes allowed:

- computation time when operating in RAM is "free"
- precomputed information (on disk): $\mathcal{O}(n \cdot \operatorname{polylog}(n))$ space

Outline

a property graph G, ppt

$\langle G, \mathrm{ppt}\rangle+$ additional information
$\langle G, \mathrm{ppt}\rangle+$ additional information source s and target t regular expression e

fast, using the additional information

a path from s to t in G, matching e

Outline

1. Search paths

- Bilateral Best First Search
- Tradeoff between short path and efficiency

2. Learning graph embeddings
3. Experimental work

- What to measure
- Results

4. Future work

From Regular Path Queries to classical path search

Given an graph exploration algorithm

G

From Regular Path Queries to classical path search

Given an graph exploration algorithm we extend it to a graph regular exploration algorithm

G

From Regular Path Queries to classical path search

Given an graph exploration algorithm we extend it to a graph regular exploration algorithm,
by exploring the direct product of the graph and an automaton
$G \times A$

From Regular Path Queries to classical path search

Given an graph exploration algorithm we extend it to a graph regular exploration algorithm,
by exploring the direct product of the graph and an automaton

$$
\frac{G \times A}{\downarrow}
$$

Classical searches

- Breadth-First-Search: very bad (social networks have small diameter)

Classical searches

- Breadth-First-Search: very bad (social networks have small diameter)
- Bilateral BFS: far better

Classical searches

- Breadth-First-Search: very bad (social networks have small diameter) - Bilateral BFS: far better
- Best First Search algorithms: use heuristic information to guide the search

Classical searches

- Breadth-First-Search: very bad (social networks have small diameter)
- Bilateral BFS: far better
- Best First Search algorithms: use heuristic information to guide the search
- A^{*} : if admissible heuristics (shortest path found)

Classical searches

- Breadth-First-Search: very bad (social networks have small diameter) - Bilateral BFS: far better
- Best First Search algorithms: use heuristic information to guide the search
- A^{*} : if admissible heuristics (shortest path found)
- otherwise, a path may be found, not necessarily a shortest one

Embeddings

Definition:

- $\mu:\{$ nodes $\} \mapsto \mathbb{R}^{d}$
- distance: $\|\mu(v)-\mu(u)\|$

Embeddings

What is a good embedding?
 \title{
Definition:
 \title{
Definition:
 - $\mu:\{$ nodes $\} \mapsto \mathbb{R}^{d}$
 - distance: $\|\mu(v)-\mu(u)\|$
}

Embeddings

Definition:

- $\mu:\{$ nodes $\} \mapsto \mathbb{R}^{d}$
- distance: $\|\mu(v)-\mu(u)\|$

What is a good embedding? not clear.

Embeddings

Definition:

- $\mu:\{$ nodes $\} \mapsto \mathbb{R}^{d}$
- distance: $\|\mu(v)-\mu(u)\|$

What is a good embedding? not clear.
Intuitively, we want that being close in the embedding means being close in the graph topology

We assume an embedding $\mu:\{$ nodes $\} \mapsto \mathbb{R}^{d}$.

Path searching

Path searching
\square

Path searching

We assume an embedding $\mu:\{$ nodes $\} \mapsto \mathbb{R}^{d}$.

```
Algorithme : Best-First-Search
input : graph G, embedding }\mu\mathrm{ , source s, target t
output : a path from s to t in G
Visited }\leftarrow{s}
while t not in Visited do
    v}\leftarrow\mathrm{ select best node in adherence of Visited;
```

 add v to Visited ;
 return a path from s to t in the subgraph induced by Visited;

Path searching

We assume an embedding $\mu:\{$ nodes $\} \mapsto \mathbb{R}^{d}$.

Algorithme : Best-First-Search
 input : graph G, embedding μ, source \mathbf{s}, target t output : a path from s to t in G

Visited $\leftarrow\{$ s $\}$;
while t not in Visited do
$\mathrm{v} \leftarrow$ select best node in adherence of Visited;

$$
\text { minimizing }\|\mu(\mathrm{t})-\mu(\mathrm{v})\|
$$

add v to Visited;
return a path from s to t in the subgraph induced by Visited ;

Path searching

We assume an embedding $\mu:\{$ nodes $\} \mapsto \mathbb{R}^{d}$.

Algorithme : Best-First-Search

input : graph \mathbf{G}, embedding μ, source s, target \mathbf{t}, parameter α output : a path from s to t in G

Visited $\leftarrow\{s\}$;
while t not in Visited do
$\mathrm{v} \leftarrow$ select best node in adherence of Visited; minimizing $\|\mu(\mathrm{t})-\mu(\mathrm{v})\| \cdot \operatorname{depth}(v)^{\alpha}$
add v to Visited;
return a path from s to t in the subgraph induced by Visited;

- depth(v): the shortest path length from s to v in the explored subgraph

Path searching

We assume an embedding $\mu:\{$ nodes $\} \mapsto \mathbb{R}^{d}$.

Algorithme : Best-First-Search

input : graph G, embedding μ, source s, target \mathbf{t}, parameter α output : a path from s to t in G

Visited $\leftarrow\{$ s $\}$;
while t not in Visited do
$\mathrm{v} \leftarrow$ select best node in adherence of Visited; minimizing $\|\mu(\mathrm{t})-\mu(\mathrm{v})\| \cdot \operatorname{depth}(v)^{\alpha}$
add v to Visited;
return a path from s to t in the subgraph induced by Visited;

- depth(v): the shortest path length from s to v in the explored subgraph
- when $\alpha=0$: deep search - when $\alpha \rightarrow \infty$: breadth first search

Path searching

We assume an embedding $\mu:\{$ nodes $\} \mapsto \mathbb{R}^{d}$.

Algorithme : Best-First-Search

input : graph G, embedding μ, source s, target \mathbf{t}, parameter α output : a path from s to t in G

Visited $\leftarrow\{$ s $\}$;
while t not in Visited do
$\mathrm{v} \leftarrow$ select best node in adherence of Visited; minimizing $\|\mu(\mathrm{t})-\mu(\mathrm{v})\| \cdot \operatorname{depth}(v)^{\alpha}$
maintain a layered DAG structure (depth); add v to Visited ;
return a path from s to t extracted from the layered $D A G$;

- depth(v): the shortest path length from s to v in the explored subgraph
- when $\alpha=0$: deep search - when $\alpha \rightarrow \infty$: breadth first search

Outline

1. Search paths

- Bilateral Best First Search
- Tradeoff between short path and efficiency

2. Learning graph embeddings
3. Experimental work

- What to measure
- Results

4. Future work

Embeddings

- SVD:
find eigenvectors of maximum eigenvalues

> of the inverse Laplacian matrix
find eigenvectors of maximum eigenvalues
of the inverse Laplacian matrix

Embeddings

- SVD:

$$
\mid
$$

E
\square

Embeddings

- SVD: find eigenvectors of maximum eigenvalues of the inverse Laplacian matrix
- Random walks + neural networks:
use learning techniques of natural language processing

Embeddings

- SVD: find eigenvectors of maximum eigenvalues of the inverse Laplacian matrix
- Random walks + neural networks:
use learning techniques of natural language processing
- Uniform random walks: deepWalk (2011)

Embeddings

- SVD: find eigenvectors of maximum eigenvalues of the inverse Laplacian matrix
- Random walks + neural networks:
use learning techniques of natural language processing
- Uniform random walks: deepWalk (2011)
- Biased random walks: node2vec (2017)

Embeddings

- SVD: find eigenvectors of maximum eigenvalues of the inverse Laplacian matrix
- Random walks + neural networks:
use learning techniques of natural language processing
- Uniform random walks: deepWalk (2011)
- Biased random walks: node2vec (2017)
- Landmarks select a small set of nodes, called landmarks compute distances from any node to any landmarks

Embeddings

- SVD: find eigenvectors of maximum eigenvalues of the inverse Laplacian matrix
- Random walks + neural networks:
use learning techniques of natural language processing
- Uniform random walks: deepWalk (2011)
- Biased random walks: node2vec (2017)
- Landmarks select a small set of nodes, called landmarks compute distances from any node to any landmarks
- already used to guide path searching on road networks (2007)

Embeddings

- SVD: find eigenvectors of maximum eigenvalues of the inverse Laplacian matrix
- Random walks + neural networks:
use learning techniques of natural language processing
- Uniform random walks: deepWalk (2011)
- Biased random walks: node2vec (2017)
- Landmarks select a small set of nodes, called landmarks compute distances from any node to any landmarks
- already used to guide path searching on road networks (2007)
- and to estimate node distance in social networks (2009)

Embeddings

- SVD: find eigenvectors of maximum eigenvalues of the inverse Laplacian matrix
- Random walks + neural networks:
use learning techniques of natural language processing
- Uniform random walks: deepWalk (2011)
- Biased random walks: node2vec (2017)
- Landmarks select a small set of nodes, called landmarks compute distances from any node to any landmarks
- already used to guide path searching on road networks (2007)
- and to estimate node distance in social networks (2009)
- many other embeddings to test. . .

Experimental work

What to measure?

efficiency: how many nodes have been visited with respect to the standard bilateral BFS?
quality: are the found paths much longer than the shortest paths?

Experimental results

method	SVD	node2vec	deepWalk	BFS

Powerlaw cluster graph (\#nodes: 2000, \#edges: 7979)

mean visited	65.06	76.36	64.13	86.76
score	74.99%	88.01%	73.92%	
mean error	0.03%	0.05%	0.01%	

Regular graph (\#nodes: 2000, \#edges: 7000)

mean visited	53.55	53.02	56.16	98.43
score	54.41%	53.86%	57.05%	
mean error	0.02%	0.03%	0.0%	

DBLP Graph (\#nodes: 5 745K, \#edges: 12 205K)

mean visited			1652.14	11632.02
score			14.2%	
mean error			0.26%	
median error			0.22%	

Future work

- improve embeddings

Future work

- improve embeddings
- maintain embeddings under updates
- force algorithms, continuous learning, landmarks

Future work

- improve embeddings
- maintain embeddings under updates
- force algorithms, continuous learning, landmarks
- from filtered paths to data regular paths

Future work

- improve embeddings
- maintain embeddings under updates
- force algorithms, continuous learning, landmarks
- from filtered paths to data regular paths
- subgraph extraction using the embedding
- convex closure

Future work

- improve embeddings
- maintain embeddings under updates
- force algorithms, continuous learning, landmarks
- from filtered paths to data regular paths
- subgraph extraction using the embedding
- convex closure
- index for searching nodes close to a point in the topology
- quadtree, octrees, k - d-tree (good for small dimensions)
- space-filling curves

Future work

- improve embeddings
- maintain embeddings under updates
- force algorithms, continuous learning, landmarks
- from filtered paths to data regular paths
- subgraph extraction using the embedding
- convex closure
- index for searching nodes close to a point in the topology
- quadtree, octrees, k - d-tree (good for small dimensions)
- space-filling curves
- graph clustering

Future work

- improve embeddings
- maintain embeddings under updates
- force algorithms, continuous learning, landmarks
- from filtered paths to data regular paths
- subgraph extraction using the embedding
- convex closure
- index for searching nodes close to a point in the topology
- quadtree, octrees, k - d-tree (good for small dimensions)
- space-filling curves
- graph clustering

Future work

- improve embeddings
- maintain embeddings under updates
- force algorithms, continuous learning, landmarks
- from filtered paths to data regular paths
- subgraph extraction using the embedding
- convex closure
- index for searching nodes close to a point in the topology
- quadtree, octrees, k - d-tree (good for small dimensions)
- space-filling curves
- graph clustering

Thank you for your attention!

More on DBLP graph

- sources: https://dblp.uni-trier.de/, January 16th, 2019 (2.4Gb xml file)
- graph: \#nodes = 5746803 (2152 092 authors) + json for each node, \#edges = 12205 333, (199Mb for edges (txt); 1.2Gb for nodes + jsons $)$ - connected comp.: 57186 - one large (5500304) and others small (<101)
- degrees: $\operatorname{avg}=5.24769 \ldots$. med $=3$, stdev $=10$, $\max =1626$,
repartition:
(log scale)

- distances (main cc, evaluated with sample >110000 pairs of nodes): $\operatorname{avg}=10.9, \operatorname{med}=11$, stdev=2, max=27
- alternative encoding "nodes are authors, edges are journals" yields much more edges (19972747)

