
Finding paths in large data graphs

Bruno Guillon Mikaela Keller Charles Paperman

UCA

LIMOS – UCA, Clermont-Ferrand
June 4, 2020

0 / 15

2012-2016 PhD in Paris (with C.Choffrut) and Milan (G.Pighizzini):
I nondeterministic two-way transducers and weighted automata
I rational transductions and beyond
I unary transducers
I descriptional complexity of automata

2016-2017 Postdoc in Warsaw (with M.Bojańczyk):
I extension of Monadic Second Order Logic on words
I regular transducers with origin semantics

2017-2018 Postdoc in Milan (with G.Pighizzini):
I reversibility in automata and transducers
I descriptional complexity of automata

November 2018-* Postdoc at inria Lille (with C.Paperman):
I algorithms for Regular Path Queries on large graphs

– work in progress

1 / 15

2012-2016 PhD in Paris (with C.Choffrut) and Milan (G.Pighizzini):
I nondeterministic two-way transducers and weighted automata
I rational transductions and beyond
I unary transducers
I descriptional complexity of automata

2016-2017 Postdoc in Warsaw (with M.Bojańczyk):
I extension of Monadic Second Order Logic on words
I regular transducers with origin semantics

2017-2018 Postdoc in Milan (with G.Pighizzini):
I reversibility in automata and transducers
I descriptional complexity of automata

November 2018-* Postdoc at inria Lille (with C.Paperman):
I algorithms for Regular Path Queries on large graphs

– work in progress

1 / 15

2012-2016 PhD in Paris (with C.Choffrut) and Milan (G.Pighizzini):
I nondeterministic two-way transducers and weighted automata
I rational transductions and beyond
I unary transducers
I descriptional complexity of automata

2016-2017 Postdoc in Warsaw (with M.Bojańczyk):
I extension of Monadic Second Order Logic on words
I regular transducers with origin semantics

2017-2018 Postdoc in Milan (with G.Pighizzini):
I reversibility in automata and transducers
I descriptional complexity of automata

November 2018-* Postdoc at inria Lille (with C.Paperman):
I algorithms for Regular Path Queries on large graphs

– work in progress

1 / 15

2012-2016 PhD in Paris (with C.Choffrut) and Milan (G.Pighizzini):
I nondeterministic two-way transducers and weighted automata
I rational transductions and beyond
I unary transducers
I descriptional complexity of automata

2016-2017 Postdoc in Warsaw (with M.Bojańczyk):
I extension of Monadic Second Order Logic on words
I regular transducers with origin semantics

2017-2018 Postdoc in Milan (with G.Pighizzini):
I reversibility in automata and transducers
I descriptional complexity of automata

November 2018-* Postdoc at inria Lille (with C.Paperman):
I algorithms for Regular Path Queries on large graphs

– work in progress

1 / 15

2012-2016 PhD in Paris (with C.Choffrut) and Milan (G.Pighizzini):
I nondeterministic two-way transducers and weighted automata
I rational transductions and beyond
I unary transducers
I descriptional complexity of automata

2016-2017 Postdoc in Warsaw (with M.Bojańczyk):
I extension of Monadic Second Order Logic on words
I regular transducers with origin semantics

2017-2018 Postdoc in Milan (with G.Pighizzini):
I reversibility in automata and transducers
I descriptional complexity of automata

November 2018-* Postdoc at inria Lille (with C.Paperman):
I algorithms for Regular Path Queries on large graphs

– work in progress
1 / 15

Graph Databases

I Graph databases
I Renewal with the noSQL trend, e.g., neo4j (SPARQL),

back-end for the rdf and semantic web
I more flexible than relational databases
I easier to distribute than relational databases

– notion of data locality, e.g., TitanDB, JanusGraph (gremlin)

I [Sun et al.’15 – SQLGraph: an efficient relational-based property graph]

2 / 15

Graph Databases

I Graph databases
I Renewal with the noSQL trend, e.g., neo4j (SPARQL),

back-end for the rdf and semantic web
I more flexible than relational databases
I easier to distribute than relational databases

– notion of data locality, e.g., TitanDB, JanusGraph (gremlin)

I [Sun et al.’15 – SQLGraph: an efficient relational-based property graph]

2 / 15

Running example: DBLP graph bipartite, undirected
#nodes: 5 750K
#edges: 12 200K
D size: 1.2Gb

Definition (Property Graph)
I a graph G = 〈V ,E 〉
I a mapping ppt : V 7→ D

with D, the set of documents 3 / 15

Paths

Definition (Regular Path Queries (RPQ))
Given
I a property graph G = 〈V ,E 〉 with ppt : V 7→ D;
I s, t ∈ V ;
I a regular expression e on D:

find a path π = s · v1 · · · v` · t such that π ∈ [|e|].

Examples (on DBLP property graph)
find path from given source to given target visiting
I only papers published after 2016
I only journal papers/not arxiv papers
I only French authors

I only paper whose abstract does not contain the word “experimental”
I papers in chronological order along the path

4 / 15

Paths

Definition (Regular Path Queries (RPQ))
Given
I a property graph G = 〈V ,E 〉 with ppt : V 7→ D;
I s, t ∈ V ;
I a regular expression e on D:

find a path π = s · v1 · · · v` · t such that π ∈ [|e|].

Examples (on DBLP property graph)
find path from given source to given target visiting
I only papers published after 2016
I only journal papers/not arxiv papers
I only French authors
I only paper whose abstract does not contain the word “experimental”

I papers in chronological order along the path

4 / 15

Paths

Definition (Regular Path Queries (RPQ))
Given
I a property graph G = 〈V ,E 〉 with ppt : V 7→ D;
I s, t ∈ V ;
I a regular expression e on D:

find a path π = s · v1 · · · v` · t such that π ∈ [|e|].

Examples (on DBLP property graph)
find path from given source to given target visiting
I only papers published after 2016
I only journal papers/not arxiv papers
I only French authors
I only paper whose abstract does not contain the word “experimental”
I papers in chronological order along the path

4 / 15

Problem

How to find regular paths in
large property graphs efficiently?

from given source
to given target

G = 〈V , E 〉
ppt : V 7→ D

stored on disk

goal: find path from given source to given target by visiting few nodes

allowed:

I computation time when operating in RAM is “free”
I precomputed information (on disk): O(n · polylog(n)) space

5 / 15

Problem

How to find regular paths in
large property graphs efficiently?

from given source
to given target

G = 〈V , E 〉
ppt : V 7→ D

stored on disk

goal: find path from given source to given target by visiting few nodes

allowed:

I computation time when operating in RAM is “free”
I precomputed information (on disk): O(n · polylog(n)) space

5 / 15

Problem

How to find regular paths in
large property graphs efficiently?

from given source
to given target

G = 〈V , E 〉
ppt : V 7→ D

stored on disk

goal: find path from given source to given target by visiting few nodes

allowed:

I computation time when operating in RAM is “free”
I precomputed information (on disk): O(n · polylog(n)) space

5 / 15

Problem

How to find regular paths in
large property graphs efficiently?

from given source
to given target

G = 〈V , E 〉
ppt : V 7→ D

stored on disk

goal: find path from given source to given target by visiting few nodes

allowed:

I computation time when operating in RAM is “free”
I precomputed information (on disk): O(n · polylog(n)) space

5 / 15

Problem

How to find regular paths in
large property graphs efficiently?

from given source
to given target

G = 〈V , E 〉
ppt : V 7→ D

stored on disk

goal: find path from given source to given target by visiting few nodes

allowed:
I computation time when operating in RAM is “free”

I precomputed information (on disk): O(n · polylog(n)) space

5 / 15

Problem

How to find regular paths in
large property graphs efficiently?

from given source
to given target

G = 〈V , E 〉
ppt : V 7→ D

stored on disk

goal: find path from given source to given target by visiting few nodes

allowed:
I computation time when operating in RAM is “free”
I precomputed information (on disk): O(n · polylog(n)) space

5 / 15

Outline

O(n · polylog(n))

a property graph G , ppt

〈G , ppt〉 + additional information

fast, using the additional information

〈G , ppt〉 + additional information
source s and target t
regular expression e

a path from s to t in G , matching e
6 / 15

Outline

1. Search paths
Bilateral Best First Search
Tradeoff between short path and efficiency

2. Learning graph embeddings

3. Experimental work
What to measure
Results

4. Future work

6 / 15

From Regular Path Queries to classical path search

Given an graph exploration algorithm

we extend it to a graph regular exploration algorithm,

by exploring the direct product of the graph and an automaton

G

× A
not materialized

7 / 15

From Regular Path Queries to classical path search

Given an graph exploration algorithm
we extend it to a graph regular exploration algorithm

,

by exploring the direct product of the graph and an automaton

G

× A
not materialized

7 / 15

From Regular Path Queries to classical path search

Given an graph exploration algorithm
we extend it to a graph regular exploration algorithm,

by exploring the direct product of the graph and an automaton

G × A

not materialized

7 / 15

From Regular Path Queries to classical path search

Given an graph exploration algorithm
we extend it to a graph regular exploration algorithm,

by exploring the direct product of the graph and an automaton

G × A
not materialized

7 / 15

Classical searches

I Breadth-First-Search: very bad (social networks have small diameter)

I Bilateral BFS: far better

I Best First Search algorithms: use heuristic information to guide the search

I A∗: if admissible heuristics (shortest path found)
I otherwise, a path may be found, not necessarily a shortest one

8 / 15

Classical searches

I Breadth-First-Search: very bad (social networks have small diameter)
I Bilateral BFS: far better

I Best First Search algorithms: use heuristic information to guide the search

I A∗: if admissible heuristics (shortest path found)
I otherwise, a path may be found, not necessarily a shortest one

8 / 15

Classical searches

I Breadth-First-Search: very bad (social networks have small diameter)
I Bilateral BFS: far better

I Best First Search algorithms: use heuristic information to guide the search

I A∗: if admissible heuristics (shortest path found)
I otherwise, a path may be found, not necessarily a shortest one

8 / 15

Classical searches

I Breadth-First-Search: very bad (social networks have small diameter)
I Bilateral BFS: far better

I Best First Search algorithms: use heuristic information to guide the search
I A∗: if admissible heuristics (shortest path found)

I otherwise, a path may be found, not necessarily a shortest one

8 / 15

Classical searches

I Breadth-First-Search: very bad (social networks have small diameter)
I Bilateral BFS: far better

I Best First Search algorithms: use heuristic information to guide the search
I A∗: if admissible heuristics (shortest path found)
I otherwise, a path may be found, not necessarily a shortest one

8 / 15

Embeddings

Definition:
I µ : {nodes} 7→ Rd

I distance: ||µ(v)− µ(u)||

What is a good embedding? not clear.

Intuitively, we want that being close in the embedding
means being close in the graph topology

9 / 15

Embeddings

Definition:
I µ : {nodes} 7→ Rd

I distance: ||µ(v)− µ(u)||

What is a good embedding?

not clear.

Intuitively, we want that being close in the embedding
means being close in the graph topology

9 / 15

Embeddings

Definition:
I µ : {nodes} 7→ Rd

I distance: ||µ(v)− µ(u)||

What is a good embedding? not clear.

Intuitively, we want that being close in the embedding
means being close in the graph topology

9 / 15

Embeddings

Definition:
I µ : {nodes} 7→ Rd

I distance: ||µ(v)− µ(u)||

What is a good embedding? not clear.

Intuitively, we want that being close in the embedding
means being close in the graph topology

9 / 15

Path searching

We assume an embedding µ : {nodes} 7→ Rd .

Algorithme : Best-First-Search
input : graph G, embedding µ, source s, target t

, parameter α

output : a path from s to t in G
Visited← {s};
while t not in Visited do

v← select best node in adherence of Visited ;

minimizing ||µ(t)− µ(v)||

·depth(v)α

maintain a layered DAG structure (depth);

add v to Visited ;
return a path from s to t in the subgraph induced by Visited ;

I depth(v): the shortest path length from s to v in the explored subgraph
I when α = 0: deep search – when α→∞: breadth first search

10 / 15

Path searching

We assume an embedding µ : {nodes} 7→ Rd .

Algorithme : Best-First-Search
input : graph G, embedding µ, source s, target t

, parameter α

output : a path from s to t in G
Visited← {s};
while t not in Visited do

v← select best node in adherence of Visited ;

minimizing ||µ(t)− µ(v)||

·depth(v)α

maintain a layered DAG structure (depth);

add v to Visited ;
return a path from s to t in the subgraph induced by Visited ;

I depth(v): the shortest path length from s to v in the explored subgraph
I when α = 0: deep search – when α→∞: breadth first search

10 / 15

Path searching

We assume an embedding µ : {nodes} 7→ Rd .

Algorithme : Best-First-Search
input : graph G, embedding µ, source s, target t

, parameter α

output : a path from s to t in G
Visited← {s};
while t not in Visited do

v← select best node in adherence of Visited ;
minimizing ||µ(t)− µ(v)||

·depth(v)α

maintain a layered DAG structure (depth);

add v to Visited ;
return a path from s to t in the subgraph induced by Visited ;

I depth(v): the shortest path length from s to v in the explored subgraph
I when α = 0: deep search – when α→∞: breadth first search

10 / 15

Path searching

We assume an embedding µ : {nodes} 7→ Rd .

Algorithme : Best-First-Search
input : graph G, embedding µ, source s, target t, parameter α
output : a path from s to t in G
Visited← {s};
while t not in Visited do

v← select best node in adherence of Visited ;
minimizing ||µ(t)− µ(v)|| ·depth(v)α

maintain a layered DAG structure (depth);

add v to Visited ;
return a path from s to t in the subgraph induced by Visited ;

I depth(v): the shortest path length from s to v in the explored subgraph

I when α = 0: deep search – when α→∞: breadth first search

10 / 15

Path searching

We assume an embedding µ : {nodes} 7→ Rd .

Algorithme : Best-First-Search
input : graph G, embedding µ, source s, target t, parameter α
output : a path from s to t in G
Visited← {s};
while t not in Visited do

v← select best node in adherence of Visited ;
minimizing ||µ(t)− µ(v)|| ·depth(v)α

maintain a layered DAG structure (depth);

add v to Visited ;
return a path from s to t in the subgraph induced by Visited ;

I depth(v): the shortest path length from s to v in the explored subgraph
I when α = 0: deep search – when α→∞: breadth first search

10 / 15

Path searching

We assume an embedding µ : {nodes} 7→ Rd .

Algorithme : Best-First-Search
input : graph G, embedding µ, source s, target t, parameter α
output : a path from s to t in G
Visited← {s};
while t not in Visited do

v← select best node in adherence of Visited ;
minimizing ||µ(t)− µ(v)|| ·depth(v)α

maintain a layered DAG structure (depth);
add v to Visited ;

return a path from s to t extracted from the layered DAG;

I depth(v): the shortest path length from s to v in the explored subgraph
I when α = 0: deep search – when α→∞: breadth first search

10 / 15

Outline

1. Search paths
Bilateral Best First Search
Tradeoff between short path and efficiency

2. Learning graph embeddings

3. Experimental work
What to measure
Results

4. Future work

11 / 15

Embeddings

I SVD: find eigenvectors of maximum eigenvalues
of the inverse Laplacian matrix

I Random walks + neural networks:
use learning techniques of natural language processing

I Uniform random walks: deepWalk (2011)
I Biased random walks: node2vec (2017)

I Landmarks select a small set of nodes, called landmarks
compute distances from any node to any landmarks

I already used to guide path searching on road networks (2007)
I and to estimate node distance in social networks (2009)

I many other embeddings to test. . .

12 / 15

Embeddings

I SVD: find eigenvectors of maximum eigenvalues
of the inverse Laplacian matrix

I Random walks + neural networks:
use learning techniques of natural language processing

I Uniform random walks: deepWalk (2011)
I Biased random walks: node2vec (2017)

I Landmarks select a small set of nodes, called landmarks
compute distances from any node to any landmarks

I already used to guide path searching on road networks (2007)
I and to estimate node distance in social networks (2009)

I many other embeddings to test. . .

12 / 15

Embeddings

I SVD: find eigenvectors of maximum eigenvalues
of the inverse Laplacian matrix

I Random walks + neural networks:
use learning techniques of natural language processing

I Uniform random walks: deepWalk (2011)
I Biased random walks: node2vec (2017)

I Landmarks select a small set of nodes, called landmarks
compute distances from any node to any landmarks

I already used to guide path searching on road networks (2007)
I and to estimate node distance in social networks (2009)

I many other embeddings to test. . .

12 / 15

Embeddings

I SVD: find eigenvectors of maximum eigenvalues
of the inverse Laplacian matrix

I Random walks + neural networks:
use learning techniques of natural language processing

I Uniform random walks: deepWalk (2011)

I Biased random walks: node2vec (2017)

I Landmarks select a small set of nodes, called landmarks
compute distances from any node to any landmarks

I already used to guide path searching on road networks (2007)
I and to estimate node distance in social networks (2009)

I many other embeddings to test. . .

12 / 15

Embeddings

I SVD: find eigenvectors of maximum eigenvalues
of the inverse Laplacian matrix

I Random walks + neural networks:
use learning techniques of natural language processing

I Uniform random walks: deepWalk (2011)
I Biased random walks: node2vec (2017)

I Landmarks select a small set of nodes, called landmarks
compute distances from any node to any landmarks

I already used to guide path searching on road networks (2007)
I and to estimate node distance in social networks (2009)

I many other embeddings to test. . .

12 / 15

Embeddings

I SVD: find eigenvectors of maximum eigenvalues
of the inverse Laplacian matrix

I Random walks + neural networks:
use learning techniques of natural language processing

I Uniform random walks: deepWalk (2011)
I Biased random walks: node2vec (2017)

I Landmarks select a small set of nodes, called landmarks
compute distances from any node to any landmarks

I already used to guide path searching on road networks (2007)
I and to estimate node distance in social networks (2009)

I many other embeddings to test. . .

12 / 15

Embeddings

I SVD: find eigenvectors of maximum eigenvalues
of the inverse Laplacian matrix

I Random walks + neural networks:
use learning techniques of natural language processing

I Uniform random walks: deepWalk (2011)
I Biased random walks: node2vec (2017)

I Landmarks select a small set of nodes, called landmarks
compute distances from any node to any landmarks

I already used to guide path searching on road networks (2007)

I and to estimate node distance in social networks (2009)

I many other embeddings to test. . .

12 / 15

Embeddings

I SVD: find eigenvectors of maximum eigenvalues
of the inverse Laplacian matrix

I Random walks + neural networks:
use learning techniques of natural language processing

I Uniform random walks: deepWalk (2011)
I Biased random walks: node2vec (2017)

I Landmarks select a small set of nodes, called landmarks
compute distances from any node to any landmarks

I already used to guide path searching on road networks (2007)
I and to estimate node distance in social networks (2009)

I many other embeddings to test. . .

12 / 15

Embeddings

I SVD: find eigenvectors of maximum eigenvalues
of the inverse Laplacian matrix

I Random walks + neural networks:
use learning techniques of natural language processing

I Uniform random walks: deepWalk (2011)
I Biased random walks: node2vec (2017)

I Landmarks select a small set of nodes, called landmarks
compute distances from any node to any landmarks

I already used to guide path searching on road networks (2007)
I and to estimate node distance in social networks (2009)

I many other embeddings to test. . .

12 / 15

Experimental work

What to measure?
efficiency: how many nodes have been visited with respect to the

standard bilateral BFS?
quality: are the found paths much longer than the shortest paths?

13 / 15

Experimental results

method SVD node2vec deepWalk BFS

Powerlaw cluster graph (#nodes: 2000, #edges: 7979)
mean visited 65.06 76.36 64.13 86.76
score 74.99% 88.01% 73.92%
mean error 0.03% 0.05% 0.01%

Regular graph (#nodes: 2000, #edges: 7000)
mean visited 53.55 53.02 56.16 98.43
score 54.41% 53.86% 57.05%
mean error 0.02% 0.03% 0.0%

DBLP Graph (#nodes: 5 745K, #edges: 12 205K)
mean visited 1652.14 11632.02
score 14.2%
mean error 0.26%
median error 0.22%

14 / 15

Future work

I improve embeddings

I maintain embeddings under updates
– force algorithms, continuous learning, landmarks

I from filtered paths to data regular paths

I subgraph extraction using the embedding – convex closure

I index for searching nodes close to a point in the topology
– quadtree, octrees, k-d-tree (good for small dimensions)

– space-filling curves

I graph clustering

Thank you for your attention!

15 / 15

Future work

I improve embeddings

I maintain embeddings under updates
– force algorithms, continuous learning, landmarks

I from filtered paths to data regular paths

I subgraph extraction using the embedding – convex closure

I index for searching nodes close to a point in the topology
– quadtree, octrees, k-d-tree (good for small dimensions)

– space-filling curves

I graph clustering

Thank you for your attention!

15 / 15

Future work

I improve embeddings

I maintain embeddings under updates
– force algorithms, continuous learning, landmarks

I from filtered paths to data regular paths

I subgraph extraction using the embedding – convex closure

I index for searching nodes close to a point in the topology
– quadtree, octrees, k-d-tree (good for small dimensions)

– space-filling curves

I graph clustering

Thank you for your attention!

15 / 15

Future work

I improve embeddings

I maintain embeddings under updates
– force algorithms, continuous learning, landmarks

I from filtered paths to data regular paths

I subgraph extraction using the embedding – convex closure

I index for searching nodes close to a point in the topology
– quadtree, octrees, k-d-tree (good for small dimensions)

– space-filling curves

I graph clustering

Thank you for your attention!

15 / 15

Future work

I improve embeddings

I maintain embeddings under updates
– force algorithms, continuous learning, landmarks

I from filtered paths to data regular paths

I subgraph extraction using the embedding – convex closure

I index for searching nodes close to a point in the topology
– quadtree, octrees, k-d-tree (good for small dimensions)

– space-filling curves

I graph clustering

Thank you for your attention!

15 / 15

Future work

I improve embeddings

I maintain embeddings under updates
– force algorithms, continuous learning, landmarks

I from filtered paths to data regular paths

I subgraph extraction using the embedding – convex closure

I index for searching nodes close to a point in the topology
– quadtree, octrees, k-d-tree (good for small dimensions)

– space-filling curves

I graph clustering

Thank you for your attention!

15 / 15

Future work

I improve embeddings

I maintain embeddings under updates
– force algorithms, continuous learning, landmarks

I from filtered paths to data regular paths

I subgraph extraction using the embedding – convex closure

I index for searching nodes close to a point in the topology
– quadtree, octrees, k-d-tree (good for small dimensions)

– space-filling curves

I graph clustering

Thank you for your attention!

15 / 15

Future work

I improve embeddings

I maintain embeddings under updates
– force algorithms, continuous learning, landmarks

I from filtered paths to data regular paths

I subgraph extraction using the embedding – convex closure

I index for searching nodes close to a point in the topology
– quadtree, octrees, k-d-tree (good for small dimensions)

– space-filling curves

I graph clustering

Thank you for your attention!

15 / 15

More on DBLP graph

I sources: https://dblp.uni-trier.de/, January 16th, 2019 (2.4Gb xml file)
I graph: #nodes = 5 746 803 (2 152 092 authors) + json for each node,

#edges = 12 205 333, (199Mb for edges (txt); 1.2Gb for nodes + jsons)
I connected comp.: 57 186 – one large (5 500 304) and others small (< 101)
I degrees: avg=5.24769 . . ., med=3, stdev=10, max=1626,

repartition:
(log scale)

I distances (main cc, evaluated with sample > 110 000 pairs of nodes):
avg=10.9, med=11, stdev=2, max=27

I alternative encoding “nodes are authors, edges are journals” yields much
more edges (19 972 747)

	Motivations
	Search paths
	Bilateral Best First Search
	Tradeoff between short path and efficiency

	Learning graph embeddings
	Experimental work
	What to measure
	Results

	Future work
	Appendix
	Appendix

