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On some recursive algorithms on graphs

Standard linear recurrence equations

I T (n) = a + T (n − 1) donne T (n) ∈ O(n).
e.g. transfer a pending vertex in a tree or move forward one
cell in an array

I It generalizes for any fixed k
T (n) = T (n − k) + a · k.
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Standard linear recurrence equations

I T (n) ≤ a + 2T ( n−1
2 ) also gives T (n) ∈ O(n).

e.g. an algo that cuts a tree in 2 and removes a vertex.

I T (n) ≤ an + T ( b
c · n)

if b < c then T (n) ∈ Θ(n)
(My favourite algorithm of this kind is for the computation of
the median of an array.)
Otherwise b > c , T (n) ∈ Θ(nlogc (b))



On some recursive algorithms on graphs

Standard linear recurrence equations

I T (n) ≤ a + 2T ( n−1
2 ) also gives T (n) ∈ O(n).

e.g. an algo that cuts a tree in 2 and removes a vertex.

I T (n) ≤ an + T ( b
c · n)

if b < c then T (n) ∈ Θ(n)
(My favourite algorithm of this kind is for the computation of
the median of an array.)
Otherwise b > c , T (n) ∈ Θ(nlogc (b))



On some recursive algorithms on graphs

Standard linear recurrence equations

Calculation of K th(TAB[1, n], i)

Linear algorithm proposed by Blum, Floyd, Pratt, Rivest and
Tarjan in 1972.
In fact, we’re going to solve a more general problem, that of
calculating the i th element of an array of integers
K th(TAB[1, n], i) which returns the element of TAB with the i th

value. To obtain the median, simply calculate
K th(TAB[1, n], dn

2e)
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Standard linear recurrence equations

Calculation of K th(TAB[1, n], i)

1. Divide TAB into dn
5e packets of 5 integers (except possibly the

last one, which contains the remainder of division by 5 of n).

2. Calculate the median of each packet. Put them in a table
Rate having n′ = dn

5e integers.

3. x ← K th(Rate[1, n′], dn′

2 e) */Computation of the median of
medians */

4. Partition TAB into A[1, α] < x ≤ B[α + 1, n] 1.

5. If i ≤ α then K th(A[1, α], i ]
Otherwise K th(B[α + 1, n], i − α]

1. As in Quicksort, taking x as the pivot. Then we know α and the sizes of
sets A and B
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Standard linear recurrence equations

Complexity Analysis

1. O(n)

2. In O(1) for each package, so in total in O(n).

3. T (dn
5e)

4. ≤ T ( 7
10n).

The median of the medians admits 1/2 of the medians above
it and each of them has at least 2 elements above it.
So the median of the medians admits at least 1/23

5n = 3
10n

elements greater than or equal to it, and and therefore at
most 7

10n elements smaller than it.
Symmetrically, at least 3

10n elements are smaller than or equal
to the median of the medians, and it has at most 7

10n
elements which are superior to it. above it.
So |A[1, α]| < 7

10n and |B[α + 1, n]| < 7
10n.

In all cases, the recursive call array will be smaller than 7
10n.
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Standard linear recurrence equations

I Therefore the inequations :

{
T (1) = 1
n ≥ 2,T (n) ≤ T (dn

5e) + T ( 7
10n) + an ≈ T ( 9

10n) + an

I Which gives T (n) ∈ O(n) and the previous algorithm is very
efficient in practice.

I Remark : Using packets of size 3 does not work and packets
of size 7 or more are less efficient (since 6

7 <
9
10).
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Standard linear recurrence equations

General formula :{
T (1) = a

n ≥ 2,T (n) =
∑i=k

i=1 aiT ( n
bi

) + an

If
∑i=k

i=1
ai
bi
< 1 then T (n) ∈ O(n).
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Standard linear recurrence equations

Applications to graphs

The mlogn cases

Decomposing a graph via a laminar trees

Application to modular decomposition
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Applications to graphs

Planar separator theorem

Tarjan Lipton’s planar separator Theorem

For a planar it is possible to find a simple cycle separator
C ∈ O(

√
n), such that the inside and the outside of the cycle each

have at most |A|, |B| ≥ 2n
3 vertices.

This separator cycle can be computed with a Breadth First Search
(BFS) in linear time. Since planar graphs are hereditary one can
easily derive recursive algorithms.
Furthermore all problems that can be solved using such theorem
with the following inequality :{

T (1) = a
T (n) ≤ T (2n

3 ) + an

T (n) ∈ O(n)
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Applications to graphs

Can also be used for a divide an conquer approach
Example to compute a shortest cycle in O(n3/2logn)
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Applications to graphs

Many generalizations . . .

Theorem Folklore : path separator theorem

For every connected graph G on n vertices there exists a path P
which partitions the vertices into L,P,R s.t.
|L ∪ P|, |P ∪ R| ≥ n

3 ,
no edge between L and R
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Applications to graphs

This domain is still very active

Recent improvement for planar graphs with small δ-hyperbolicity
(2023).
A separator theorem for strongly connected digraphs (Bessy,
Thomassé, Viennot STACS 2024) coming soon here.
And extensions to bounded treewidth graph . . .
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Applications to graphs

What I like with these theorems is that they have proofs based on
graph searches.
BFS for the planar separator theorem
DFS for the folklore undirected one
special DFS for strong digraph one
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Applications to graphs

Between linear and quadratic

Except for sparse graphs such as planar graphs, for which
m ∈ O(n),
we must evaluate the complexity in terms of the size of the graph,
namely n + m.
For some problems, such as diameter computation, it is important
to obtain algorithms non quadratic in m.
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Applications to graphs

Without any separator theorem

Sparse expander graphs do not have any cycle separator theorem.
Sometimes we can only decompose a graph into k components
G1, . . . ,Gk with no bounds on their sizes.
Applying it recursively it yields some inequality like :
T (n + m) = a(n + m) + ΣT (ni + mi )
If the decomposition and the merging operations can be done in
linear time.
But this recursive equation does not provide linearity, could be
quadratic.
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The mlogn cases

Degrees parts

Classification of the vertices in parts having the same degree.
A variation of the folklore algorithm for twins.

Generalized degree partition

Classification of the vertices in parts having the same degree with
respects to the other parts. To compute this partition we can use a
variation of the partition refinement.
DegreeRefine(P, S) :
computes the partition of S in parts having same degree with P
The computation of this partition is the first step of the main
isomorphism algorithms.
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The mlogn cases

a•

b•

c
•

d
•

e•

f•

g•

h•

P(T ) = {{c , d}3, {e, f }2, {a, b, g , h}1}
Pfinal (T ) = {{d}3(3,2,2), {c}3(3,1,1), {e, f }2, {a, b}1(3), {g , h}1(2)}
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The mlogn cases

1•
2
•

3
•

4•

5
•

6•

7
• 8•

P(T ′) = {{3, 5}3, {2, 7}2, {1, 4, 6, 8}1}
Pfinal (T

′) = {{3, 5}3, {2, 7}2, {4, 6}1(3){1, 8}1(2)}
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The mlogn cases

I P(T ) = {{c , d}3, {e, f }2, {a, b, g , h}1}
P(T ′) = {{3, 5}3, {2, 7}2, {1, 4, 6, 8}1}
These two degree partitions are isomorphic but T and T ′ are
not isomorphic.

I Pfinal (T ) =
{{d}3(3,2,2), {c}3(3,1,1), {e, f }2, {a, b}1(3), {g , h}1(2)}
Pfinal (T

′) = {{3, 5}3, {2, 7}2, {4, 6}1(3){1, 8}1(2)}
But their two generalized degree partitions are not isomorphic.
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The mlogn cases

Proposition

If G ,G ′ are isomorphic graphs then also their generalized degree
partitions are isomorphic.
Moreover : two trees T and T ′ are isomorphic iff their generalized
degree partitions are isomorphic

Proof

Clearly if two graphs are isomorphic their generalized degree
partitions must be isomorphic.
Let us consider the converse in the case of trees.
By induction on |T | = |T ′| and deleting one leaf in each tree
denoted by x , x ′ (these leaves must belong to isomorphic parts of
the generalized degree partitions).
The generalized degree partitions of T \ x and T ′ \ x ′ are still
isomorphic but parts could be different due to some merging of
parts from T and T ′.
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The mlogn cases

How to compute this generalized degree partition for a
given graph G ?

I The first degree partition can be computed in
O(|V (G )|+ |E (G )|)

I Generalized degree partition can be computed using some
partition refinement techniques.
In O(n + mlogn) using Hopcroft’s rule : ignoring the largest
new cell, after splitting a cell which ensures that an edge is at
most consider logn times.
A variant rule : Avoid the biggest part provides the same
complexity.
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The mlogn cases

This Generalized degree partition is the first step of every ”good”
isomorphism algorithm.
Such as Brendand McKay and Adolfo Piperno in Nauty or Traces
https://pallini.di.uniroma1.it/, name it as the coarsest
equitable partition.
Idem the Babai’s subexponential algorithm in O(2

√
nlogn) starts by

computing such a partition.
In mathematics it is also known as an optimal fibration
see http://Vigna.di.unimi.it/fibrations/ a well done web
page by S. Vigna.

https://pallini.di.uniroma1.it/
http://Vigna.di.unimi.it/fibrations/ 
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The mlogn cases

I It is also the core of the :
Weisfeiler-Leman graph isomorphism test (1968).
Very used in graph mining.
A nice survey https://arxiv.org/pdf/2201.07083.pdf

I A one hour lecture by Martin Grohe on the connexions with
graph neural networks and descriptive logics.

I For many classes of graphs the Weisfeiler-Leman graph
isomorphism test works, such as graphs with bounded
rankwidth or twinwidth . . .

https://arxiv.org/pdf/2201.07083.pdf
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The mlogn cases

Bad news for graph isomorphism

I If G is regular then P(G ) = {V (G )} = Pfinal (G ) and there
exists non isomorphic regular graphs. As for example G1 is the
disjoint union of 2 triangles and G2 is a cycle of length 6.
Both are degree 2 regular and non isomorphic.

I There exists a lower bound to compute the generalized degree
partition.
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The mlogn cases

Berkholz, Bonsma and Grohe theorem (2016)

They called it color refinement, and they computed a canonical
color refinement.
They proved Ω((n + m)logn) lower bound roughly for algorithms
based on partition refinement.

Theorem

For every integer k ≥ 2, there exist a graph with n ∈ O(2kk)
vertices and m ∈ O(2kk2) edges on which any partition refinement
algorithm to compute a canonical color refinement requires
Ω((n + m)logn).
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The mlogn cases
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The mlogn cases

Some open questions

It seems that the proof can be applied to bisimilarity in transition
systems.
But it does not work for the minimization of a deterministic
automaton.
Can this be applied to the computation of doubly lexicographic
ordering of a square nxn positive matrix for which the best
algorithm is in O(n + mlogn) where m is the non-zero entries of
the matrix ?
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The mlogn cases

Example of a doubly lexicographic ordering

C1 C2 C3 C4 C5

L1 1 0 1 0 1

L2 0 1 0 1 1

L3 1 1 0 1 1

L4 0 0 0 0 1

L5 0 1 1 0 0

C3 C1 C4 C5 C2

L4 0 0 0 1 0

L1 1 1 0 1 0

L5 1 0 0 0 1

L2 0 0 1 1 1

L3 0 1 1 1 1
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The mlogn cases

I Such an ordering always exists

I Best algorithm to compute one :
Paige and Tarjan [1987] proposed an O(LlogL) where
L = n + m + e for a matrix with n lines, m columns and e non
zero values, using partition refinement.

I For undirected graphs, such an ordering of the symmetric
incidence matrix, yields an ordering of the vertices which has
nice properties.
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Decomposing a graph via a laminar trees

As defined in Schrivjer 2003 a laminar family F on a set V
satisfies :
F ⊆2V and for all A,B ∈ F , either A ⊆ B or B ⊆ A or A∩B = ∅.
Laminar families can be represented using a forest of rooted trees.
A rooted tree Tr = (T , r) is a pair composed of a tree T and a
distinguished vertex r , call the root. A leaf of a rooted tree is a
degree-one node. So the root may be a leaf. A node that is not a
leaf is an internal node. Moreover, we assume that every
non-leaf node of a rooted tree has at least two children.
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Decomposing a graph via a laminar trees
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Decomposing a graph via a laminar trees

Theorem

The procedure Compute can be implemented in linear time, if the
2 following conditions (i) and (ii) are satisfied.
(i) The merge of 2 non connected subgraphs can be done in O(1).
(ii) The merge of every connected subgraph partition P can be
done in O(|EP |).
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Decomposing a graph via a laminar trees

Proof

Using (i) we then notice that in the whole procedure at most |V |
merges of non connected subgraphs can be done in at most
O(|T |) = O(|V |) steps, since by definition of laminar-trees every
node in T has at least 2 children.
Now we can consider the merging of connected subgraph partition
and using (ii) we have the following recursive inequalities :
T (n + m) ≤ Σ1≤i≤kT (ni + mi ) + a · k + b · |EP |, where
n = Σ1≤i≤kni and m = Σ1≤i≤kmi + |EP |.
Since k ≤ |EP |+ 1, then an easy induction gives
T (n + m) ≤ c · (n + m) for every c ≤ 2 ·max{a, b}.
And the procedure is therefore linear.
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Application to modular decomposition
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Modules

Modules

For a graph G = (V ,E ), a module is a subet of vertices A ⊆ V
such that
∀x , y ∈ A, N(x)− A = N(y)− A
The problem with this definition : must we check all subsets A ?

Trivial Modules

∅, {x} and V are modules.

Prime Graphs

A graph is prime if it admits only trivial modules.



On some recursive algorithms on graphs

Application to modular decomposition

Modules

Modules

For a graph G = (V ,E ), a module is a subet of vertices A ⊆ V
such that
∀x , y ∈ A, N(x)− A = N(y)− A
The problem with this definition : must we check all subsets A ?

Trivial Modules

∅, {x} and V are modules.

Prime Graphs

A graph is prime if it admits only trivial modules.



On some recursive algorithms on graphs

Application to modular decomposition

Modules

Modules

For a graph G = (V ,E ), a module is a subet of vertices A ⊆ V
such that
∀x , y ∈ A, N(x)− A = N(y)− A
The problem with this definition : must we check all subsets A ?

Trivial Modules

∅, {x} and V are modules.

Prime Graphs

A graph is prime if it admits only trivial modules.



On some recursive algorithms on graphs

Application to modular decomposition

Examples

Characterization of Modules

A subset of vertices M of a graph G = (V ,E ) is a module iff
∀x ∈ V \M, either M ⊆ N(x) or M ∩ N(x) = ∅
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Examples of modules

I connected components of G

I connected components of G

I any vertex subset of the
complete graph (or the stable)
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I Modules can be also defined for directed graphs but also for
many discrete structures such as hypergraphs, matroids,
boolean functions, submodular functions, automaton, . . .

I But also an operation on graphs : Modular composition
a graph grammar with a simple rule : replace a vertex by a
graph

I Very natural notion, (re)discovered under many names in
various combinatorial structures
such as : clan, homogeneous set, . . .

I An important tool in graph theory, there exists a modular
width (which is just the maximal size of a prime node in the
modular decomposition tree).
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Modular decomposition tree

Strong modules

A strong module is a module that does not strictly overlap any
other module.

Tree

A recursive a this theorem yields a tree T in which :

I The root corresponds to V

I Leaves are associated to vertices

I Each node corresponds to a strong module

There are 3 types of nodes :

Parallel, Series and Prime
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Laminar-tree

The modular decomposition tree of a graph G is particular
Laminar-tree on V (G )

The set of strong modules is nested into an inclusion tree (called
the modular decomposition tree MD(G ) of G ).
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I A preprocessing step : a graph search in fact a LexBFS, that
produces an ordering τ of the vertices. Sort the adjacency lists
with τ .

I Partition the graph G into G1, . . .Gk and apply the algorithm
recursively on the G ′i s.
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LexBFS laminar-tree
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Although LexBFS is a BFS, il explores and builds its
laminar-tree in a DFS way ! ! !
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Algo for modular decomposition
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A recursive step

Figure: The idea is to merge the local MD trees in O(|rededges|)
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I Preprocessing via a unique LexBFS.
The Gi are the ”slices” of the LexBFS. More precisely
If the LexBFS starts at a vertex x ∈ G , S1 = NG (x), Si is the
LexBFS tie-break set when the last vertex of Si−1 has been
visited by LexBFS.
(The definition also applies recursively on the S ′i s).

I It is well-known that a LexBFS on G generates legitimate
LexBFS’s on the G (Si )

′s, and the slices are consecutive within
the visiting ordering τ of the LexBFS. Furthermore vertices in
some Si have the same neighbourhood to the left.
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I By definition all vertices in a slice Si are connected the same
way to the left.

I But for a slice Si to be a module of G we have to check that :
∀y ∈ Sj , with i < j y is connected to all vertices in Si .

I This will be done using the active edges.
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Sketch of the complexity

I Let us consider a step of the algorithm
x , S1, . . .Sk

I |S1| = |N(x)| therefore there exists O(|MD(G (S1)|) active
edges for S1

I Between Si and Si+1 :
either there is no edge and G is not connected.
or at least one vertex in Si is connected to all vertices in Si+1.
Therefore the active edges are in Ω(|MD(G (Si+1)|)

I So for the merging operation we can use an algorithm linear in
the size of the already computed modular decomposition trees.
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I This merging of the decomposition trees is the technical part
of the algorithm.

I Two steps :

1. Compute the modules of G (Si ) for 1 ≤ i < k (since Sk is a
module of G ) that are not modules of G

2. Insert x when gluing the trees.
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I This recursive generic idea was hidden in our ICALP 2008
paper ( an obscure ”Complexity issues” paragraph at the end
of the 12 pages paper).

I The same scenario may be possible for transitive orientation a
very closely related problem. Since with we wrote two sibling
algorithms for modular decomposition and transitive
orientation in O((n + m)(logn)).

I But perhaps it could be useful for some other problems such
as split decomposition , circular arc graph recognition, or even
hypergraph modular decomposition starting with doubly
lexicographic ordering (instead of LexBFS).

I For Median graphs also very related to LexBFS.
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As a conclusion

Three related problems :

I From the complexity viewpoint :
Generalized degree partition ≥ minimal deterministic
automaton ≥ modular decomposition

I It deals with the computation of 3 equivalence relations on
the vertices of a graph.

I But their complexities do not completely behave as my
intuition.

I In fact our modular decomposition algorithm uses partition
refinement but not only.

I Discrete exact algorithmic is hard.
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Many thanks for listening


