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Why use an ontology?
∙ extend the vocabulary (making queries easier to formulate)
∙ provide a unified view of multiple data sources
∙ obtain more answers to queries (by exploiting domain knowledge)
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SETTING FOR TODAY’S TALK

Conjunctive queries (CQs) ∼ select-project-join queries in SQL
conjunctions of atoms, some variables can be existentially quantified

∃y. Faculty(x) ∧ Teaches(x, y)
(find all faculty members that teach something)

OWL 2 QL ontologies
∙ W3C standardized ontology language
∙ based upon DL-LiteR description logic
∙ designed for querying large datasets
∙ simple yet useful language
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OWL 2 QL ONTOLOGIES

A (somewhat simplified) definition in FOL syntax

Ontology = finite set of FOL sentences (called axioms) of the forms:

∀x
(
τ(x) → τ ′(x)

)
∀x

(
τ(x) ∧ τ ′(x) → ⊥

)
∀x, y

(
ϱ(x, y) → ϱ′(x, y)

)
∀x, y

(
ϱ(x, y) ∧ ϱ′(x, y) → ⊥

)
∀x ϱ(x, x) ∀x

(
ϱ(x, x) → ⊥

)
where the formulas τ(x) and ϱ(x, y) are defined by the grammars

τ(x) ::= A(x) | ∃y ϱ(x, y) (A unary predicate)
ϱ(x, y) ::= P(x, y) | P(y, x) (P binary predicate)

For readability, we’ll drop the universal quantifiers
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EXAMPLE AXIOMS

Professors and fellows are subclasses of faculty

Prof(x) → Faculty(x) Fellow(x) → Faculty(x)

Professors and fellows are disjoint classes

Prof(x) ∧ Fellow(x) → ⊥

Professors must teach something

Prof(x) → ∃yTeaches(x, y)

Everything that is taught is a course

∃x Teaches(x, y) → Course(y)

Being head of a team/lab/dept implies being a member

HeadOf(x, y) → MemberOf(x, y)
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OMQA SEMANTICS

Knowledge base (KB) = ontology O + dataset D (unary & binary facts)

Classical FOL semantics, based upon interpretations I = (∆I , ·I)
∙ function ·I maps each unary predicate A to AI ⊆ ∆I , each binary
predicate R to RI ⊆ ∆I ×∆I , and each constant a to aI ∈ ∆I

∙ satisfaction of axioms, facts, or ground query in I : as usual

Model = interpretation that satisfies all axioms and facts in the KB
∙ open-world assumption, facts not in the dataset can still be true

Certain answers of query q w.r.t. KB (O,D):
∙ tuples of constants a⃗ (of same arity as q) such that
q(a⃗) holds in every model of (O,D)

∙ corresponds to a form of entailment, we’ll write O,D |= q(a⃗)

Ontology-mediated query answering: computing certain answers
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OMQA EXAMPLE

Ontology:

Prof(x)→ Faculty(x) Fellow(x)→ Faculty(x)
Prof(x)→ ∃yTeaches(x, y) ∃xTeaches(x, y)→ Course(y)

Dataset:

{Prof(anna), Fellow(tom), Teaches(tom, cs101)}

Query: q(x) = ∃y.Faculty(x) ∧ Teaches(x, y)

Get the following certain answers:
∙ anna Prof(anna) + Prof(x) → Faculty(x) + Prof(x) → ∃yTeaches(x, y)

∙ tom Fellow(tom) + Fellow(x) → Faculty(x) + Teaches(tom, cs101)
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CANONICAL MODELS

For Horn ontologies (no form of disjunction) like OWL 2 QL:
enough to consider a single canonical model
∙ idea: exhaustively apply ontology axioms to dataset
∙ possibly infinite (A(x) → ∃yR(x, y), R(x, y) → A(y))
∙ forest-shaped (dataset + new tree structures for ∃-axioms)
∙ give correct answer to all CQs

A

R

P-
R

a

...
aR

aRR
aRP-

OMQA in OWL 2 QL =
finding ways to
map the query into
the canonical model
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COMPLEXITY OF OMQA

OMQA viewed as a decision problem (yes-or-no question):
INPUT: An n-ary query q, a dataset D, a ontology O,

and a candidate answer tuple a⃗
QUESTION: Does O,D |= q(a⃗)?

Combined complexity: in terms of size of whole input

Data complexity: in terms of size of D only
∙ view rest of input as fixed (of constant size)
∙ motivation: data typically much larger than rest of input

data complexity ≤ combined complexity
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QUERY REWRITING

Idea: reduce OMQA to database query evaluation
∙ rewriting step: ontology O + query q⇝ first-order (SQL) query q′

∙ evaluation step: evaluate query q′ using relational DB system

Advantage: harness efficiency of relational database systems

Key notion: first-order (FO) rewriting

∙ FO query q′ is an FO-rewriting of OMQ (O,q) iff for every dataset D:

O,D |= q(a⃗) ⇔ DBD |= q′(a⃗)

Informally: evaluating q′ over D (viewed as DB) gives correct result

Good news: every CQ and OWL 2 QL ontology has an FO-rewriting
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EXAMPLE: QUERY REWRITING

Reconsider the ontology O:

Prof(x)→ Faculty(x) Fellow(x)→ Faculty(x)
Prof(x)→ ∃yTeaches(x, y) Teaches(x, y)→ Course(y)

and the query q(x) = ∃y.Faculty(x) ∧ Teaches(x, y)

The following query is a rewriting of q(x) w.r.t. O:

q(x) ∨ Prof(x) ∨ ∃y.Fellow(x) ∧ Teaches(x, y)

Evaluating the rewritten query over the earlier dataset

{Prof(anna), Fellow(tom), Teaches(tom, cs101)}

produces the two certain answers: anna and tom
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QUERY REWRITING: THEORY AND PRACTICE

Data-independent reduction of OMQA to DB query evaluation
∙ inherit low data complexity (AC0 ⊊ PTIME) of FO query evaluation

However, experiments with several rewriting algorithms showed that
the generated rewritings can be huge!
∙ can be difficult / impossible to generate and evaluate

To make the technique work in practice: want to generate reasonably
small rewritings that are not too difficult to evaluate

This raises the following questions:
Succinctness When can we guarantee polynomial-size rewritings?
Complexity More generally, when is OMQA tractable?
Optimality Can query rewriting achieve optimal complexity?
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SUCCINCTNESS OF REWRITINGS



EASY NEGATIVE RESULT FOR UCQ-REWRITINGS

Many of the proposed rewriting algorithms produce unions of
conjunctive queries (UCQs = ∨ of CQs)

Not hard to see smallest UCQ-rewriting may be exponentially large:

∙ Query: A01 (x) ∧ . . . ∧ A0n(x)
∙ Ontology: A11(x) → A01 (x) A12(x) → A02(x) . . . A1n(x) → A0n(x)
∙ Rewriting:

∨
(i1,...,in)∈{0,1} A

i1
1 (x) ∧ Ai11 (x) ∧ . . . ∧ Ai11 (x)

But: simple polysize FO-rewriting does exist!
∧n

i=1(A0i (x) ∨ A1i (x))

To get positive results, need to go beyond UCQs
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DIFFERENT FORMS OF REWRITINGS

PE-rewritings: positive existential queries (only ∃, ∧, ∨)

(r(x, y)∨ s(y, x))∧ (A(x)∨ (B(x)∧∃z p(x, z)))∧ (A(y)∨ (B(y)∧∃z p(y, z)))

NDL-rewritings: non-recursive Datalog queries

q1(x, y),q2(x),q2(y) → goal(x, y)
r(x, y) → q1(x, y) A(x) → q2(x)
s(y, x) → q1(x, y) B(x),p(x, z) → q2(x)

FO-rewritings: first-order queries (can also use ∀, ¬)

What if we replace UCQs by PE / NDL / FO?
Do we get polysize rewritings?
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FO-rewritings: first-order queries (can also use ∀, ¬)

What if we replace UCQs by PE / NDL / FO?
Do we get polysize rewritings?
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DIFFERENT FORMS OF REWRITINGS

PE-rewritings: positive existential queries (only ∃, ∧, ∨)
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FIRST NEGATIVE RESULTS [KKPZ12]

Exponential blowup unavoidable for PE / NDL-rewritings

Formally: sequence of CQs qn and OWL 2 QL ontologies On such that

∙ PE- and NDL-rewritings of (On,qn) exponential in |qn|+ |On|
∙ FO-rewritings of (On,qn) superpolynomial unless NP/poly ⊆ NC1

Key proof step: reduce CNF satisfiability to OMQA

∙ ontology generates full binary tree, leaves represent valuations
∙ depth of tree = number of variables

∙ tree-shaped query∗ selects valuation, checks clauses are satisfied
∙ number of leaves / branches in query = number of clauses

∗ tree-shaped (acyclic) = undirected graph induced by query is a tree

16/31



FIRST NEGATIVE RESULTS [KKPZ12]

Exponential blowup unavoidable for PE / NDL-rewritings

Formally: sequence of CQs qn and OWL 2 QL ontologies On such that

∙ PE- and NDL-rewritings of (On,qn) exponential in |qn|+ |On|
∙ FO-rewritings of (On,qn) superpolynomial unless NP/poly ⊆ NC1

Key proof step: reduce CNF satisfiability to OMQA

∙ ontology generates full binary tree, leaves represent valuations
∙ depth of tree = number of variables

∙ tree-shaped query∗ selects valuation, checks clauses are satisfied
∙ number of leaves / branches in query = number of clauses

∗ tree-shaped (acyclic) = undirected graph induced by query is a tree

16/31



RESTRICTING ONTOLOGY DEPTH [KKPZ14], [BKKPZ18]

Depth of ontology =
maximum depth of generated trees in canonical model

∙ O has finite depth ↔ applying axioms in O always terminates

Does restricting ontology depth suffice for polysize rewritings?
Unfortunately not...

Depth 2 ontologies:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NP/poly⊆ NC1

Depth 1 ontologies:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NL/poly⊆ NC1

∙ but: polysize PE-rewritings for tree-shaped queries
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MAP OF RESULTS SO FAR
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COMPLETING THE LANDSCAPE [BKP15], [BKKPZ18]
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COMPLETING THE LANDSCAPE [BKP15], [BKKPZ18]

Strong negative result for PE-rewritings
∙ no polysize PE-rewritings for depth 2 ontologies + linear CQs

Conditional negative results for FO-rewritings
∙ polysize FO-rewritings exist iff

∙ SAC1 ⊆ NC1 bounded depth + bounded treewidth CQs
∙ NL/poly⊆ NC1 bounded-leaf tree-shaped CQs

Positive results for NDL-rewritings
∙ bounded depth ontology + bounded treewidth CQs
∙ bounded-leaf tree-shaped CQs (+ arbitrary ontology)

Takeaway: NDL good target language for rewritings
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BRIEF GLIMPSE AT PROOF TECHNIQUES (1)

Standard computational complexity not the right tool
∙ can be used to show no polytime-computable rewriting
∙ ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity
∙ branch of complexity that classifies Boolean functions wrt. size /
depth of Boolean circuits / formulas that compute them

∙ recall k-ary Boolean function maps tuples from {0, 1}k to {0, 1}

Example: function REACHn

∙ input: a Boolean vector representing the adjacency matrix of a
directed graph G with n vertices including special vertices s and t

∙ output: 1 iff encoded graph G contains a directed path from s to t
No family of polysize mon. Boolean formulas computing REACHn
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BRIEF GLIMPSE AT PROOF TECHNIQUES (2)

Types of rewritings⇝ ways of representing Boolean functions

PE-rewritings monotone Boolean formulas (∧,∨)
NDL-rewritings monotone Boolean circuits (∨- and ∧-gates)
FO-rewritings Boolean formulas (∧,∨,¬)

Associate Boolean functions with ontology-mediated query (O,q)

‘Lower bound’ function f LB
O,q ⇒ lower bounds on rewriting size

∙ transform rewriting of (O, q) into formula / circuit that computes f LB
O,q

‘Upper bound’ function f UB
O,q ⇒ upper bounds on rewriting size

∙ transform formula / circuit that computes f UB
O,q into rewriting of (O, q)

Exploit circuit complexity results about (in)existence of small
formulas / circuits computing different classes of Boolean functions
∙ which functions expressible as f LB

q,O / f UB
q,O for given OMQ class?

∙ intermediate computational model: hypergraph programs
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HYPERGRAPH PROGRAMS

A hypergraph program (HGP) is a hypergraph H = (V, E), where:
∙ vertices labelled by 0, 1, or literal (¬)pi
∙ input: valuation of p0, . . . ,pn
∙ outputs 1 ⇔ set of non-overlapping hyperedges that ‘covers all
zeros’ (i.e. contains all vertices whose label evaluates to 0)

Restricted HGPs: monotone, bounded degree, tree / linear

Hypergraph associated with ontology-mediated query (O,q):
∙ vertices = atoms in q
∙ hyperedges = subqueries of q ‘relevant’ for O

∙ roughly: can be satisfied by tree-shaped structure of canonical model
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BACK TO GLIMPSE AT PROOF TECHNIQUES

Upper bound function Lower bound function
for class C of OMQs for class C of OMQs

hypergraph  
programs

Class of

Circuit  
complexity 

class

characterizes

computed by  
polysize

computed by 
polysize
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Upper bound function Lower bound function
for class C of OMQs for class C of OMQs

hypergraph  
programs

Class of

Circuit  
complexity 

class

computed by  
polysize

computed by 
polysize

characterizes

C = OMQs with bounded-leaf CQs 

NL/poly

C = OMQs with linear CQs, depth 2 ontologies

(m)

linear HGPs = 
bounded-leaf HGPs

(monotone) Positive result for NDL

Negative result for PE

mNL/poly polysize  
mon. circuit

REACH    mNL/poly2
62REACH    mNC1
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COMPLEXITY AND OPTIMALITY



WHAT DOES ALL THIS MEAN FOR THE COMPLEXITY OF OMQA?

Small rewritings do not guarantee low combined complexity

∙ need to consider cost of producing and evaluating the rewriting

Large rewritings do not guarantee high combined complexity

∙ maybe query rewriting is not the most efficient approach

Motivated the study of the complexity landscape of query answering

Focus on combined complexity (data complexity same in all cases)
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COMBINED COMPLEXITY LANDSCAPE FOR DL-LITE [BKP15], [BKKPZ18]

1 2 3 . . . d arb.

2

. . .

ℓ

trees

tw 2

. . .

tw t

arb.

Ontology depth

Nu
m
be

ro
fl
ea

ve
s

Tr
ee

wi
dt
h

NL-complete

LOGCFL-complete

NP
-c
om

pl
et
e

NP-complete

LO
GC

FL
-c
NL ⊆ LOGCFL ⊆ PTIME ⊆ NP

27/31



COMPARING SUCCINCTNESS & COMPLEXITY LANDSCAPES

Size of rewritings Combined complexity of OMQA
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polysize NDL-rewritings ∼ polynomial (LOGCFL / NL) complexity

Can we marry the positive succinctness & complexity results?
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OPTIMAL NDL-REWRITINGS [BKKPRZ17]

For the three well-behaved classes of OMQs, define
NDL-rewritings of optimal complexity:
∙ rewriting can be constructed by LC transducer
∙ evaluating the rewriting can be done in C
with C ∈ {NL, LOGCFL} the complexity of the OMQ class

Preliminary experiments with simple OMQs (depth 1, linear CQs):
∙ compared with other NDL-rewritings (Clipper, Rapid, Presto)
∙ our rewritings grow linearly with increasing query size
∙ other systems produce rewritings that grow exponentially

Take-away: optimal complexity achievable via query rewriting
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CONCLUSION



CONCLUSION

Ontology-mediated query answering:
∙ new paradigm for intelligent information systems
∙ offers many advantages, but also computational challenges

Query rewriting promising algorithmic approach

Many interesting problems related to OMQA and query rewriting:
∙ succinctness of rewritings (Boolean functions, circuit complexity)
∙ existence of FO and Datalog rewritings (automata, CSP)
∙ other tools: parameterized complexity, word rewriting

Active area with lots left to explore!
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QUESTIONS?
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WHAT IS LOGCFL?

Original definition: class of decision problems logspace-reducible to
the membership problem for context-free languages

Characterization in terms of circuits: solvable by uniform family of
polysize, logarithmic-depth circuits, whose AND gates have fan-in 2

(called SAC1 circuits)

Yet another definition: problems solvable by non-deterministic
polytime logspace-bounded TM augmented with a stack

Relationship to other classes:

LOGSPACE ⊆ NL ⊆ LOGCFL ⊆ NC2 ⊆ P ⊆ NP

Considered highly parallelizable
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LOGCFL MEMBERSHIP FOR BOUNDED-LEAF QUERIES

Devise procedure that can be implemented by non-deterministic
polytime logspace-bounded TM augmented with a stack

Idea: guess homomorphism into canonical model, use stack to store
word part w of domain element aw in canonical model

Difficulty: need to store several words, but have only one stack!

Solution: ‘synchronize’ traversal of different branches
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LOGCFL-HARDNESS FOR LINEAR QUERIES

Reduction from SAC1 acceptance problem:
decide whether an input of length n is accepted by the nth circuit of
a logspace-uniform family of SAC1 circuits

Use characterization of acceptance in terms of proof trees:
∙ associate skeleton proof tree SkelC to each circuit C
∙ label each node in skeleton with gate from C
∙ circuit C accepts input σ ⇔ valid labelling of SkelC

∙ labelling respects the structure of C
∙ leaves in SkelC mapped to input gates which are 1 under σ
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EXAMPLE: SAC1 CIRCUIT AND SKELETON PROOF TREE
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LOGCFL-HARDNESS FOR LINEAR QUERIES

Reduction from SAC1 acceptance problem: decide whether an input
of length n is accepted by the nth circuit of a logspace-uniform
family of SAC1 circuits

Use characterization of acceptance in terms of proof trees:
∙ associate skeleton proof tree SkelC to each circuit C
∙ label each node in skeleton with gate from C
∙ circuit C accepts input σ ⇔ valid labelling of SkelC

∙ labelling respects the structure of C
∙ leaves in SkelC mapped to input gates which are 1 under σ

Sketch of reduction:
∙ TBox generates tree-unfolding of circuit C, input gates marked 1, 0
∙ linear query corresponds to depth-first traversal of SkelC
∙ query holds ⇔ valid labelling of SkelC
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PARAMETERIZED COMPLEXITY [BKKPRZ17]

Upper bound on time needed to evaluate our NDL-rewritings:
∙ depth d / number of leaves ℓ occur in the exponent

Is it possible to do better?
∙ formally: fixed-parameter tractable (FPT)? f(d, ℓ) · p(|q|, |T |, |A|)

Parameterized complexity of answering tree-shaped OMQs (T ,q):
∙ parameters: depth d of T , number ℓ of leaves in CQs
∙ not FPT if depth d taken as parameter W[2]-hard
∙ not FPT if number of leaves ℓ taken as parameter W[1]-hard

Message: for good performance, want d and ℓ small
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