ONTOLOGY-MEDIATED QUERY ANSWERING WITH OWL 2 QL ONTOLOGIES

Succinctness and Complexity Landscapes

Meghyn Bienvenu (LaBRI - CNRS & University of Bordeaux)

Joint work with Stanislav Kikot, Roman Kontchakov, Vladimir Podolskii, and Michael Zakharyaschev

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

"Melanie has listeriosis" "Paul has Lyme disease"

medical knowledge

"Listeriosis & Lyme disease "Find all patients with are bacterial infections"

bacterial infections"

expected answers: Melanie, Paul

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

Why use an ontology?

- extend the vocabulary (making queries easier to formulate)
- · provide a unified view of multiple data sources
- · obtain more answers to queries (by exploiting domain knowledge)

Conjunctive queries (CQs) ~ select-project-join queries in SQL conjunctions of atoms, some variables can be existentially quantified

 $\exists y. Faculty(x) \land Teaches(x, y)$

(find all faculty members that teach something)

Conjunctive queries (CQs) ~ select-project-join queries in SQL conjunctions of atoms, some variables can be existentially quantified

 $\exists y. Faculty(x) \land Teaches(x, y)$

(find all faculty members that teach something)

OWL 2 QL ontologies

- · W3C standardized ontology language
- \cdot based upon DL-Lite_{\mathcal{R}} description logic
- \cdot designed for querying large datasets
- \cdot simple yet useful language

A (somewhat simplified) definition in FOL syntax

Ontology = finite set of FOL sentences (called **axioms**) of the forms:

 $\begin{array}{ll} \forall x \left(\tau(x) \to \tau'(x) \right) & \forall x \left(\tau(x) \land \tau'(x) \to \bot \right) \\ \forall x, y \left(\varrho(x, y) \to \varrho'(x, y) \right) & \forall x, y \left(\varrho(x, y) \land \varrho'(x, y) \to \bot \right) \\ \forall x \varrho(x, x) & \forall x \left(\varrho(x, x) \to \bot \right) \end{array}$

where the formulas $\tau(x)$ and $\rho(x, y)$ are defined by the grammars

$$\begin{aligned} \tau(x) & ::= A(x) \mid \exists y \, \varrho(x, y) & (A \text{ unary predicate}) \\ \varrho(x, y) & ::= P(x, y) \mid P(y, x) & (P \text{ binary predicate}) \end{aligned}$$

For readability, we'll drop the universal quantifiers

A (somewhat simplified) definition in FOL syntax

Ontology = finite set of FOL sentences (called **axioms**) of the forms:

 $\begin{array}{l} \forall x \left(\tau(x) \to \tau'(x) \right) & \forall x \left(\tau(x) \land \tau'(x) \to \bot \right) \\ \forall x, y \left(\varrho(x, y) \to \varrho'(x, y) \right) & \forall x, y \left(\varrho(x, y) \land \varrho'(x, y) \to \bot \right) \end{array}$

where the formulas $\tau(x)$ and $\rho(x, y)$ are defined by the grammars

$$\begin{aligned} \tau(x) & ::= A(x) \mid \exists y \, \varrho(x, y) & (A \text{ unary predicate}) \\ \varrho(x, y) & ::= P(x, y) \mid P(y, x) & (P \text{ binary predicate}) \end{aligned}$$

For readability, we'll drop the universal quantifiers

Professors and fellows are subclasses of faculty $Prof(x) \rightarrow Faculty(x)$ $Fellow(x) \rightarrow Faculty(x)$

Professors and fellows are subclasses of faculty $Prof(x) \rightarrow Faculty(x)$ $Fellow(x) \rightarrow Faculty(x)$ Professors and fellows are disjoint classes $Prof(x) \wedge Fellow(x) \rightarrow \bot$

5/31

Professors and fellows are subclasses of faculty $Prof(x) \rightarrow Faculty(x)$ $Fellow(x) \rightarrow Faculty(x)$ Professors and fellows are disjoint classes $Prof(x) \wedge Fellow(x) \rightarrow \bot$ Professors must teach something

 $\operatorname{Prof}(x) \to \exists y \operatorname{Teaches}(x, y)$

Professors and fellows are subclasses of faculty $Prof(x) \rightarrow Faculty(x)$ $Fellow(x) \rightarrow Faculty(x)$ Professors and fellows are disjoint classes $Prof(x) \land Fellow(x) \rightarrow \bot$ Professors must teach something $Prof(x) \rightarrow \exists y Teaches(x, y)$ Everything that is taught is a course $\exists x \operatorname{Teaches}(x, y) \rightarrow \operatorname{Course}(y)$

Professors and fellows are subclasses of faculty $Prof(x) \rightarrow Faculty(x)$ $Fellow(x) \rightarrow Faculty(x)$ Professors and fellows are disjoint classes $Prof(x) \land Fellow(x) \rightarrow \bot$ Professors must teach something $Prof(x) \rightarrow \exists y Teaches(x, y)$ Everything that is taught is a course $\exists x \operatorname{Teaches}(x, y) \rightarrow \operatorname{Course}(y)$ Being head of a team/lab/dept implies being a member $HeadOf(x, y) \rightarrow MemberOf(x, y)$

Classical FOL semantics, based upon interpretations $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$

- function $\cdot^{\mathcal{I}}$ maps each unary predicate A to $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$, each binary predicate R to $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$, and each constant a to $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- $\cdot\,$ satisfaction of axioms, facts, or ground query in $\mathcal{I}:$ as usual

Classical FOL semantics, based upon interpretations $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$

- function $\cdot^{\mathcal{I}}$ maps each unary predicate A to $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$, each binary predicate R to $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$, and each constant a to $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- \cdot satisfaction of axioms, facts, or ground query in $\mathcal{I}:$ as usual

Model = interpretation that satisfies all axioms and facts in the KB

· open-world assumption, facts not in the dataset can still be true

Classical FOL semantics, based upon interpretations $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$

- function $\cdot^{\mathcal{I}}$ maps each unary predicate A to $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$, each binary predicate R to $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$, and each constant a to $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- \cdot satisfaction of axioms, facts, or ground query in $\mathcal{I}:$ as usual

Model = interpretation that satisfies all axioms and facts in the KB

· open-world assumption, facts not in the dataset can still be true

Certain answers of query q w.r.t. KB (\mathcal{O}, \mathcal{D}):

- tuples of constants \vec{a} (of same arity as q) such that $q(\vec{a})$ holds in every model of $(\mathcal{O}, \mathcal{D})$
- · corresponds to a form of entailment, we'll write $\mathcal{O}, \mathcal{D} \models q(\vec{a})$

Classical FOL semantics, based upon interpretations $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$

- function $\cdot^{\mathcal{I}}$ maps each unary predicate A to $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$, each binary predicate R to $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$, and each constant a to $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- \cdot satisfaction of axioms, facts, or ground query in $\mathcal{I}:$ as usual

Model = interpretation that satisfies all axioms and facts in the KB

· open-world assumption, facts not in the dataset can still be true

Certain answers of query q w.r.t. KB (\mathcal{O}, \mathcal{D}):

- tuples of constants \vec{a} (of same arity as q) such that $q(\vec{a})$ holds in every model of $(\mathcal{O}, \mathcal{D})$
- · corresponds to a form of entailment, we'll write $\mathcal{O}, \mathcal{D} \models q(\vec{a})$

Ontology-mediated query answering: computing certain answers

Ontology:

 $Prof(x) \rightarrow Faculty(x)$ $Fellow(x) \rightarrow Faculty(x)$ $Prof(x) \rightarrow \exists yTeaches(x, y)$ $\exists xTeaches(x, y) \rightarrow Course(y)$

Dataset:

{Prof(anna), Fellow(tom), Teaches(tom, cs101)}

Query: $q(x) = \exists y. Faculty(x) \land Teaches(x, y)$

Ontology:

 $Prof(x) \rightarrow Faculty(x)$ $Fellow(x) \rightarrow Faculty(x)$ $Prof(x) \rightarrow \exists yTeaches(x, y)$ $\exists xTeaches(x, y) \rightarrow Course(y)$

Dataset:

{Prof(anna), Fellow(tom), Teaches(tom, cs101)}

Query: $q(x) = \exists y. Faculty(x) \land Teaches(x, y)$

Get the following certain answers:

- · anna Prof(anna) + Prof(x) \rightarrow Faculty(x) + Prof(x) $\rightarrow \exists y \text{Teaches}(x, y)$
- tom Fellow(tom) + Fellow(x) \rightarrow Faculty(x) + Teaches(tom, cs101)

For **Horn ontologies** (no form of disjunction) like OWL 2 QL: enough to consider a single **canonical model**

- · idea: exhaustively apply ontology axioms to dataset
- possibly infinite $(A(x) \rightarrow \exists y R(x, y), R(x, y) \rightarrow A(y))$
- · **forest-shaped** (dataset + new tree structures for ∃-axioms)
- · give correct answer to all CQs

For **Horn ontologies** (no form of disjunction) like OWL 2 QL: enough to consider a single **canonical model**

- · idea: exhaustively apply ontology axioms to dataset
- possibly infinite $(A(x) \rightarrow \exists y R(x, y), R(x, y) \rightarrow A(y))$
- · forest-shaped (dataset + new tree structures for ∃-axioms)
- · give correct answer to all CQs

OMQA in OWL 2 QL =

finding ways to map the query into the canonical model

OMQA viewed as a decision problem (yes-or-no question):

- INPUT: An *n*-ary query q, a dataset \mathcal{D} , a ontology \mathcal{O} , and a candidate answer tuple \vec{a}
- QUESTION: **Does** $\mathcal{O}, \mathcal{D} \models q(\vec{a})$?

OMQA viewed as a **decision problem** (yes-or-no question):

INPUT: An *n*-ary query q, a dataset \mathcal{D} , a ontology \mathcal{O} , and a candidate answer tuple \vec{a}

QUESTION: **Does** $\mathcal{O}, \mathcal{D} \models q(\vec{a})$?

Combined complexity: in terms of size of whole input

Data complexity: in terms of size of \mathcal{D} only

- view rest of input as fixed (of constant size)
- · motivation: data typically much larger than rest of input

data complexity < combined complexity

Idea: reduce OMQA to database query evaluation

- · rewriting step: ontology \mathcal{O} + query $q \rightsquigarrow$ first-order (SQL) query q'
- \cdot evaluation step: evaluate query q' using relational DB system

Advantage: harness efficiency of relational database systems

Idea: reduce OMQA to database query evaluation

- · rewriting step: ontology \mathcal{O} + query $q \rightsquigarrow$ first-order (SQL) query q'
- \cdot evaluation step: evaluate query q' using relational DB system

Advantage: harness efficiency of relational database systems

Key notion: first-order (FO) rewriting

· FO query q' is an FO-rewriting of OMQ (\mathcal{O}, q) iff for every dataset \mathcal{D} :

$$\mathcal{O}, \mathcal{D} \models q(\vec{a}) \quad \Leftrightarrow \quad \mathsf{DB}_{\mathcal{D}} \models q'(\vec{a})$$

Informally: evaluating q' over \mathcal{D} (viewed as DB) gives correct result

Idea: reduce OMQA to database query evaluation

- · rewriting step: ontology \mathcal{O} + query $q \rightsquigarrow$ first-order (SQL) query q'
- \cdot evaluation step: evaluate query q' using relational DB system

Advantage: harness efficiency of relational database systems

Key notion: first-order (FO) rewriting

· FO query q' is an FO-rewriting of OMQ (\mathcal{O}, q) iff for every dataset \mathcal{D} :

$$\mathcal{O}, \mathcal{D} \models q(\vec{a}) \quad \Leftrightarrow \quad \mathcal{DB}_{\mathcal{D}} \models q'(\vec{a})$$

Informally: evaluating q' over \mathcal{D} (viewed as DB) gives correct result

Good news: every CQ and OWL 2 QL ontology has an FO-rewriting

Reconsider the ontology \mathcal{O} :

 $Prof(x) \rightarrow Faculty(x)$ $Fellow(x) \rightarrow Faculty(x)$ $Prof(x) \rightarrow \exists y Teaches(x, y)$ $Teaches(x, y) \rightarrow Course(y)$

and the query $q(x) = \exists y. Faculty(x) \land Teaches(x, y)$

Reconsider the ontology \mathcal{O} :

 $Prof(x) \rightarrow Faculty(x)$ $Fellow(x) \rightarrow Faculty(x)$ $Prof(x) \rightarrow \exists y Teaches(x, y)$ $Teaches(x, y) \rightarrow Course(y)$

and the query $q(x) = \exists y. Faculty(x) \land Teaches(x, y)$

The following query is a rewriting of q(x) w.r.t. \mathcal{O} :

 $q(x) \lor \operatorname{Prof}(x) \lor \exists y.\operatorname{Fellow}(x) \land \operatorname{Teaches}(x, y)$

Reconsider the ontology \mathcal{O} :

 $Prof(x) \rightarrow Faculty(x)$ $Fellow(x) \rightarrow Faculty(x)$ $Prof(x) \rightarrow \exists y Teaches(x, y)$ $Teaches(x, y) \rightarrow Course(y)$

and the query $q(x) = \exists y. Faculty(x) \land Teaches(x, y)$

The following query is a rewriting of q(x) w.r.t. \mathcal{O} :

 $q(x) \lor \operatorname{Prof}(x) \lor \exists y.\operatorname{Fellow}(x) \land \operatorname{Teaches}(x, y)$

Evaluating the rewritten query over the earlier dataset

{Prof(anna), Fellow(tom), Teaches(tom, cs101)}

produces the two certain answers: anna and tom

Data-independent reduction of OMQA to DB query evaluation

 \cdot inherit **low data complexity (AC**₀ \subsetneq **PTIME)** of FO query evaluation

QUERY REWRITING: THEORY AND PRACTICE

Data-independent reduction of OMQA to DB query evaluation

 \cdot inherit **low data complexity (AC**₀ \subseteq **PTIME)** of FO query evaluation

However, experiments with several rewriting algorithms showed that the generated rewritings can be huge!

· can be difficult / impossible to generate and evaluate

QUERY REWRITING: THEORY AND PRACTICE

Data-independent reduction of OMQA to DB query evaluation

· inherit low data complexity (AC $_0 \subsetneq$ PTIME) of FO query evaluation

However, experiments with several rewriting algorithms showed that the generated rewritings can be huge!

· can be difficult / impossible to generate and evaluate

To make the technique work in practice: want to generate **reasonably small rewritings that are not too difficult to evaluate**

QUERY REWRITING: THEORY AND PRACTICE

Data-independent reduction of OMQA to DB query evaluation

· inherit **low data complexity (AC** $_0 \subsetneq$ **PTIME)** of FO query evaluation

However, experiments with several rewriting algorithms showed that the generated rewritings can be huge!

· can be difficult / impossible to generate and evaluate

To make the technique work in practice: want to generate **reasonably** small rewritings that are not too difficult to evaluate

This raises the following questions:

Succinctness When can we guarantee polynomial-size rewritings? Complexity More generally, when is OMQA tractable? Optimality Can query rewriting achieve optimal complexity?

SUCCINCTNESS OF REWRITINGS

Many of the proposed rewriting algorithms produce unions of conjunctive queries (UCQs = \lor of CQs)
Many of the proposed rewriting algorithms produce unions of conjunctive queries (UCQs = \lor of CQs)

Not hard to see smallest UCQ-rewriting may be exponentially large:

Many of the proposed rewriting algorithms produce **unions of conjunctive queries (UCQs =** \lor **of CQs)**

Not hard to see smallest UCQ-rewriting may be exponentially large:

- \cdot Query: $A^0_1(x) \wedge \ldots \wedge A^0_n(x)$
- $\cdot \mbox{ Ontology: } A^1_1(x) \to A^0_1(x) \quad A^1_2(x) \to A^0_2(x) \quad \dots \quad A^1_n(x) \to A^0_n(x)$
- · Rewriting: $\bigvee_{(i_1,\ldots,i_n)\in\{0,1\}} A_1^{i_1}(x) \wedge A_1^{i_1}(x) \wedge \ldots \wedge A_1^{i_1}(x)$

Many of the proposed rewriting algorithms produce **unions of conjunctive queries (UCQs =** \lor **of CQs)**

Not hard to see smallest UCQ-rewriting may be exponentially large:

- \cdot Query: $A^0_1(x) \wedge \ldots \wedge A^0_n(x)$
- $\cdot \mbox{ Ontology: } A^1_1(x) \to A^0_1(x) \quad A^1_2(x) \to A^0_2(x) \quad \dots \quad A^1_n(x) \to A^0_n(x)$
- · Rewriting: $\bigvee_{(i_1,\ldots,i_n)\in\{0,1\}}A_1^{i_1}(x)\wedge A_1^{i_1}(x)\wedge\ldots\wedge A_1^{i_1}(x)$

But: simple polysize FO-rewriting does exist! $\bigwedge_{i=1}^{n} (A_{i}^{0}(x) \lor A_{i}^{1}(x))$

Many of the proposed rewriting algorithms produce **unions of conjunctive queries (UCQs =** \lor **of CQs)**

Not hard to see smallest UCQ-rewriting may be exponentially large:

- \cdot Query: $A^0_1(x) \wedge \ldots \wedge A^0_n(x)$
- $\cdot \mbox{ Ontology: } A^1_1(x) \to A^0_1(x) \quad A^1_2(x) \to A^0_2(x) \quad \dots \quad A^1_n(x) \to A^0_n(x)$
- · Rewriting: $\bigvee_{(i_1,\ldots,i_n)\in\{0,1\}}A_1^{i_1}(x)\wedge A_1^{i_1}(x)\wedge\ldots\wedge A_1^{i_1}(x)$

But: simple polysize FO-rewriting does exist! $\bigwedge_{i=1}^{n} (A_{i}^{0}(x) \lor A_{i}^{1}(x))$

To get positive results, need to go beyond UCQs

 $(r(x,y) \lor s(y,x)) \land (A(x) \lor (B(x) \land \exists z \, p(x,z))) \land (A(y) \lor (B(y) \land \exists z \, p(y,z)))$

 $(r(x,y) \lor s(y,x)) \land (A(x) \lor (B(x) \land \exists z \, p(x,z))) \land (A(y) \lor (B(y) \land \exists z \, p(y,z)))$

NDL-rewritings: non-recursive Datalog queries

$$\begin{aligned} q_1(x,y), q_2(x), q_2(y) &\to \text{goal}(x,y) \\ r(x,y) &\to q_1(x,y) \\ s(y,x) &\to q_1(x,y) \end{aligned} \qquad \begin{array}{l} A(x) \to q_2(x) \\ B(x), p(x,z) \to q_2(x) \end{aligned}$$

 $(r(x,y) \lor s(y,x)) \land (A(x) \lor (B(x) \land \exists z \, p(x,z))) \land (A(y) \lor (B(y) \land \exists z \, p(y,z)))$

NDL-rewritings: non-recursive Datalog queries

$$\begin{aligned} q_1(x,y), q_2(x), q_2(y) &\to \text{goal}(x,y) \\ r(x,y) &\to q_1(x,y) \\ s(y,x) &\to q_1(x,y) \end{aligned} \qquad \begin{array}{l} A(x) \to q_2(x) \\ B(x), p(x,z) \to q_2(x) \end{aligned}$$

FO-rewritings: first-order queries (can also use \forall , \neg)

 $(r(x,y) \lor s(y,x)) \land (A(x) \lor (B(x) \land \exists z \, p(x,z))) \land (A(y) \lor (B(y) \land \exists z \, p(y,z)))$

NDL-rewritings: non-recursive Datalog queries

$$\begin{aligned} q_1(x,y), q_2(x), q_2(y) &\to \text{goal}(x,y) \\ r(x,y) &\to q_1(x,y) \\ s(y,x) &\to q_1(x,y) \end{aligned} \qquad \begin{array}{l} A(x) \to q_2(x) \\ B(x), p(x,z) \to q_2(x) \end{aligned}$$

FO-rewritings: first-order queries (can also use \forall , \neg)

What if we replace UCQs by PE / NDL / FO? Do we get polysize rewritings?

Exponential blowup unavoidable for PE / NDL-rewritings

Formally: sequence of CQs q_n and OWL 2 QL ontologies \mathcal{O}_n such that

- **PE- and NDL-rewritings** of (\mathcal{O}_n, q_n) exponential in $|q_n| + |\mathcal{O}_n|$
- FO-rewritings of (\mathcal{O}_n, q_n) superpolynomial unless NP/poly \subseteq NC¹

Exponential blowup unavoidable for PE / NDL-rewritings

Formally: sequence of CQs q_n and OWL 2 QL ontologies \mathcal{O}_n such that

- **PE- and NDL-rewritings** of (\mathcal{O}_n, q_n) exponential in $|q_n| + |\mathcal{O}_n|$
- FO-rewritings of (\mathcal{O}_n, q_n) superpolynomial unless NP/poly \subseteq NC¹

Key proof step: reduce CNF satisfiability to OMQA

- · ontology generates full binary tree, leaves represent valuations
 - · depth of tree = number of variables
- · tree-shaped query* selects valuation, checks clauses are satisfied
 - \cdot number of leaves / branches in query = number of clauses
- * tree-shaped (acyclic) = undirected graph induced by query is a tree

maximum depth of generated trees in canonical model

 $\cdot \mathcal{O}$ has finite depth \leftrightarrow applying axioms in \mathcal{O} always terminates

maximum depth of generated trees in canonical model

 $\cdot \mathcal{O}$ has finite depth \leftrightarrow applying axioms in \mathcal{O} always terminates

Does restricting ontology depth suffice for polysize rewritings?

maximum depth of generated trees in canonical model

 $\cdot \ \mathcal{O}$ has finite depth \leftrightarrow applying axioms in \mathcal{O} always terminates

Does restricting ontology depth suffice for polysize rewritings? Unfortunately not...

maximum depth of generated trees in canonical model

 $\cdot \ \mathcal{O}$ has finite depth \leftrightarrow applying axioms in \mathcal{O} always terminates

Does restricting ontology depth suffice for polysize rewritings? Unfortunately not...

Depth 2 ontologies:

- no polysize PE- or NDL-rewritings
- \cdot no polysize FO-rewritings unless NP/poly \subseteq NC¹

Depth 1 ontologies:

- \cdot no polysize PE- or NDL-rewritings
- \cdot no polysize FO-rewritings unless NL/poly \subseteq NC¹

maximum depth of generated trees in canonical model

 $\cdot \ \mathcal{O}$ has finite depth \leftrightarrow applying axioms in \mathcal{O} always terminates

Does restricting ontology depth suffice for polysize rewritings? Unfortunately not...

Depth 2 ontologies:

- no polysize PE- or NDL-rewritings
- \cdot no polysize FO-rewritings unless NP/poly \subseteq NC¹

Depth 1 ontologies:

- \cdot no polysize PE- or NDL-rewritings
- \cdot no polysize FO-rewritings unless NL/poly \subseteq NC¹
- · but: polysize PE-rewritings for tree-shaped queries

no poly PE but poly NDL

COMPLETING THE LANDSCAPE

no poly PE but poly NDL navnolnies hurispalycNitL

Strong negative result for PE-rewritings

 \cdot no polysize PE-rewritings for depth 2 ontologies + linear CQs

Conditional negative results for FO-rewritings

- · polysize FO-rewritings exist iff
 - $\cdot SAC^1 \subseteq NC^1$
 - $\cdot \ \mathsf{NL/poly} \subseteq \ \mathsf{NC}^1$

bounded depth + bounded treewidth CQs bounded-leaf tree-shaped CQs

Strong negative result for PE-rewritings

no polysize PE-rewritings for depth 2 ontologies + linear CQs

Conditional negative results for FO-rewritings

- · polysize FO-rewritings exist iff
 - $\cdot SAC^1 \subseteq NC^1$
 - $\cdot \ \mathsf{NL/poly} \subseteq \ \mathsf{NC}^1$

bounded depth + bounded treewidth CQs bounded-leaf tree-shaped CQs

Positive results for NDL-rewritings

- bounded depth ontology + bounded treewidth CQs
- · bounded-leaf tree-shaped CQs (+ arbitrary ontology)

Takeaway: NDL good target language for rewritings

Standard computational complexity not the right tool

- \cdot can be used to show no polytime-computable rewriting
- \cdot ... but not that no polysize rewriting exists

Standard computational complexity not the right tool

- \cdot can be used to show no polytime-computable rewriting
- \cdot ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity

- branch of complexity that classifies Boolean functions wrt. size / depth of Boolean circuits / formulas that compute them
- · recall k-ary Boolean function maps tuples from $\{0,1\}^k$ to $\{0,1\}$

Standard computational complexity not the right tool

- \cdot can be used to show no polytime-computable rewriting
- \cdot ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity

- branch of complexity that classifies Boolean functions wrt. size / depth of Boolean circuits / formulas that compute them
- · recall k-ary Boolean function maps tuples from $\{0,1\}^k$ to $\{0,1\}$

Example: function REACH_n

- input: a Boolean vector representing the adjacency matrix of a directed graph G with *n* vertices including special vertices *s* and *t*
- \cdot output: 1 iff encoded graph G contains a directed path from s to t

Standard computational complexity not the right tool

- \cdot can be used to show no polytime-computable rewriting
- \cdot ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity

- branch of complexity that classifies Boolean functions wrt. size / depth of Boolean circuits / formulas that compute them
- · recall k-ary Boolean function maps tuples from $\{0,1\}^k$ to $\{0,1\}$

Example: function REACH_n

• input: a Boolean vector representing the adjacency matrix of a directed graph G with *n* vertices including special vertices *s* and *t*

• output: 1 iff encoded graph G contains a directed path from s to t No family of polysize mon. Boolean formulas computing REACH_n

Types of rewritings \rightsquigarrow ways of representing Boolean functions

PE-rewritings	monotone Boolean formulas (\land,\lor)
NDL-rewritings	monotone Boolean circuits (∨- and ∧-gates)
FO-rewritings	Boolean formulas (\land,\lor,\neg)

PE-rewritings	monotone Boolean formulas (\land,\lor)
NDL-rewritings	monotone Boolean circuits (∨- and ∧-gates)
FO-rewritings	Boolean formulas (\land,\lor,\neg)

Associate Boolean functions with ontology-mediated query (\mathcal{O}, q)

PE-rewritings	monotone Boolean formulas (\land,\lor)
NDL-rewritings	monotone Boolean circuits (∨- and ∧-gates)
FO-rewritings	Boolean formulas (\land,\lor,\neg)

Associate Boolean functions with ontology-mediated query (\mathcal{O}, q)

'Lower bound' function $f_{\mathcal{O},q}^{LB} \Rightarrow$ lower bounds on rewriting size

· transform rewriting of (\mathcal{O}, q) into formula / circuit that computes $f_{\mathcal{O},q}^{LB}$

'Upper bound' function $f_{\mathcal{O},q}^{UB} \Rightarrow$ upper bounds on rewriting size

· transform formula / circuit that computes $f_{\mathcal{O},q}^{UB}$ into rewriting of (\mathcal{O},q)

PE-rewritings	monotone Boolean formulas (\land,\lor)
NDL-rewritings	monotone Boolean circuits (∨- and ∧-gates)
FO-rewritings	Boolean formulas (\land,\lor,\neg)

Associate Boolean functions with ontology-mediated query (\mathcal{O},q)

'Lower bound' function $f_{\mathcal{O},q}^{LB} \Rightarrow$ lower bounds on rewriting size

· transform rewriting of (\mathcal{O}, q) into formula / circuit that computes $f_{\mathcal{O},q}^{LB}$

'Upper bound' function $f_{\mathcal{O},a}^{UB} \Rightarrow$ upper bounds on rewriting size

· transform formula / circuit that computes $f_{\mathcal{O},q}^{UB}$ into rewriting of (\mathcal{O},q)

Exploit circuit complexity results about (in)existence of small formulas / circuits computing different classes of Boolean functions

- which functions expressible as $f_{q,O}^{LB}$ / $f_{q,O}^{UB}$ for given OMQ class?
 - \cdot intermediate computational model: hypergraph programs

- A hypergraph program (HGP) is a hypergraph H = (V, E), where:
 - · vertices labelled by 0, 1, or literal $(\neg)p_i$
- input: valuation of p_0, \ldots, p_n
- outputs 1 ⇔ set of non-overlapping hyperedges that 'covers all zeros' (i.e. contains all vertices whose label evaluates to 0)

Restricted HGPs: monotone, bounded degree, tree / linear

Hypergraph associated with ontology-mediated query (\mathcal{O}, q) :

- vertices = atoms in q
- · hyperedges = subqueries of q 'relevant' for O
 - \cdot roughly: can be satisfied by tree-shaped structure of canonical model

COMPLEXITY AND OPTIMALITY

Small rewritings do not guarantee low combined complexity

 \cdot need to consider cost of producing and evaluating the rewriting

Large rewritings do not guarantee high combined complexity

 $\cdot\,$ maybe query rewriting is not the most efficient approach

Small rewritings do not guarantee low combined complexity

 \cdot need to consider cost of producing and evaluating the rewriting

Large rewritings do not guarantee high combined complexity

 $\cdot\,$ maybe query rewriting is not the most efficient approach

Motivated the study of the complexity landscape of query answering

Focus on combined complexity (data complexity same in all cases)

 $\mathsf{NL} \subseteq \mathsf{LOGCFL} \subseteq \mathsf{PTIME} \subseteq \mathsf{NP}$

COMPARING SUCCINCTNESS & COMPLEXITY LANDSCAPES

Size of rewritings

Combined complexity of OMQA

polysize NDL-rewritings ~ polynomial (LOGCFL / NL) complexity

COMPARING SUCCINCTNESS & COMPLEXITY LANDSCAPES

Size of rewritings

Combined complexity of OMQA

polysize NDL-rewritings ~ polynomial (LOGCFL / NL) complexity Can we marry the positive succinctness & complexity results?
For the three well-behaved classes of OMQs, define NDL-rewritings of optimal complexity:

- rewriting can be constructed by L^C transducer
- \cdot evaluating the rewriting can be done in C

with $C \in \{NL, LOGCFL\}$ the complexity of the OMQ class

[BKKPRZ17]

For the three well-behaved classes of OMQs, define **NDL-rewritings of optimal complexity**:

- rewriting can be constructed by L^C transducer
- evaluating the rewriting can be done in C

with $C \in \{NL, LOGCFL\}$ the complexity of the OMQ class

Preliminary experiments with simple OMQs (depth 1, linear CQs):

- · compared with other NDL-rewritings (Clipper, Rapid, Presto)
- · our rewritings grow linearly with increasing query size
- · other systems produce rewritings that grow exponentially

[BKKPRZ17]

For the three well-behaved classes of OMQs, define **NDL-rewritings of optimal complexity**:

- rewriting can be constructed by L^C transducer
- evaluating the rewriting can be done in C with $C \in \{NL, LOGCFL\}$ the complexity of the OMQ class

Preliminary experiments with simple OMQs (depth 1, linear CQs):

- · compared with other NDL-rewritings (Clipper, Rapid, Presto)
- · our rewritings grow linearly with increasing query size
- · other systems produce rewritings that grow exponentially

Take-away: optimal complexity achievable via query rewriting

[BKKPRZ17]

CONCLUSION

Ontology-mediated query answering:

- \cdot new paradigm for intelligent information systems
- · offers many advantages, but also computational challenges

Query rewriting promising algorithmic approach

Many interesting problems related to OMQA and query rewriting:

- · succinctness of rewritings (Boolean functions, circuit complexity)
- existence of FO and Datalog rewritings (automata, CSP)
- \cdot other tools: parameterized complexity, word rewriting

Active area with lots left to explore!

QUESTIONS?

[KKPZ12] S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev: Exponential Lower Bounds and Separation for Query Rewriting. 39th International Colloquium on Automata, Languages, and Programming (ICALP'12), 2012.

[GS12] G. Gottlob and T. Schwentick: Rewriting Ontological Queries into Small Nonrecursive Datalog Programs. 13th International Conference on the Principles of Knowledge Representation and Reasoning (**KR'12**), 2012.

[GKKPSZ14] G. Gottlob, S. Kikot, R. Kontchakov, V. Podolskii, T. Schwentick, and M. Zakharyaschev: The Price of Query Rewriting in Ontology-based Data Access. Artificial Intelligence (AIJ), 2014.

[KKPZ14] S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev: On the Succinctness of Query Rewriting over Shallow Ontologies. 29th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS'14), 2014. [BKP15] M. Bienvenu, S. Kikot, V. Podolskii: Tree-like Queries in OWL 2 QL: Succinctness and Complexity Results. 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS'15), 2015.

[BKKPRZ17] M. Bienvenu, S. Kikot, R. Kontchakov, V. Podolskii, V. Ryzhikov and M. Zakharyaschev: The Complexity of Ontology-Based Data Access with OWL 2 QL and Bounded Treewidth Queries. Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS'17), 2017.

[BKKPZ18] M. Bienvenu, S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev: Ontology-Mediated Queries: Combined Complexity and Succinctness of Rewritings via Circuit Complexity. Journal of the ACM (JACM), 2018. **Original definition**: class of decision problems **logspace-reducible** to the **membership problem for context-free languages**

Characterization in terms of circuits: solvable by uniform family of polysize, logarithmic-depth circuits, whose AND gates have fan-in 2 (called SAC¹ circuits)

Yet another definition: problems solvable by non-deterministic polytime logspace-bounded TM augmented with a stack

Relationship to other classes:

```
\mathsf{LOGSPACE} \subseteq \mathsf{NL} \subseteq \mathsf{LOGCFL} \subseteq \mathsf{NC}^2 \subseteq \mathsf{P} \subseteq \mathsf{NP}
```

Considered highly parallelizable

Devise procedure that can be implemented by non-deterministic polytime logspace-bounded TM augmented with a stack

Devise procedure that can be implemented by non-deterministic polytime logspace-bounded TM augmented with a stack

Idea: guess homomorphism into canonical model, use stack to store word part w of domain element aw in canonical model Devise procedure that can be implemented by **non-deterministic polytime logspace-bounded TM augmented with a stack**

Idea: guess homomorphism into canonical model, use stack to store word part w of domain element aw in canonical model

Difficulty: need to store several words, but have only one stack!

Solution: 'synchronize' traversal of different branches

Reduction from SAC¹ acceptance problem:

decide whether an input of length n is accepted by the nth circuit of a logspace-uniform family of SAC¹ circuits

Use characterization of acceptance in terms of proof trees:

- associate skeleton proof tree Skel_C to each circuit C
- $\cdot\,$ label each node in skeleton with gate from C
- · circuit C accepts input $\sigma \Leftrightarrow$ valid labelling of $Skel_C$
 - $\cdot\,$ labelling respects the structure of C
 - \cdot leaves in Skel_c mapped to input gates which are 1 under σ

EXAMPLE: SAC¹ CIRCUIT AND SKELETON PROOF TREE

Reduction from SAC¹ acceptance problem: decide whether an input of length n is accepted by the nth circuit of a logspace-uniform family of SAC¹ circuits

Use characterization of acceptance in terms of proof trees:

- · associate skeleton proof tree Skel_C to each circuit C
- \cdot label each node in skeleton with gate from C
- \cdot circuit *C* accepts input $\sigma \Leftrightarrow$ valid labelling of $Skel_C$
 - $\cdot\,$ labelling respects the structure of C
 - \cdot leaves in Skel_c mapped to input gates which are 1 under σ

Sketch of reduction:

- TBox generates tree-unfolding of circuit C, input gates marked 1, 0
- · linear query corresponds to depth-first traversal of Skel_C
- · query holds \Leftrightarrow valid labelling of $Skel_C$

[BKKPRZ17]

Upper bound on time needed to evaluate our NDL-rewritings:

 \cdot depth *d* / number of leaves ℓ occur in the exponent

[BKKPRZ17]

Upper bound on time needed to evaluate our NDL-rewritings:

- \cdot depth *d* / number of leaves ℓ occur in the exponent
- Is it possible to do better?
- formally: fixed-parameter tractable (FPT)? $f(d, \ell)$

 $f(d, \ell) \cdot p(|q|, |\mathcal{T}|, |\mathcal{A}|)$

[bkkprz17]

Upper bound on time needed to evaluate our NDL-rewritings:

- \cdot depth *d* / number of leaves ℓ occur in the exponent
- Is it possible to do better?
- · formally: fixed-parameter tractable (FPT)? $f(d, \ell) \cdot p(|q|, |\mathcal{T}|, |\mathcal{A}|)$

Parameterized complexity of answering tree-shaped OMQs (\mathcal{T}, q) :

 \cdot parameters: depth *d* of \mathcal{T} , number ℓ of leaves in CQs

Upper bound on time needed to evaluate our NDL-rewritings:

- \cdot depth *d* / number of leaves ℓ occur in the exponent
- Is it possible to do better?
- · formally: fixed-parameter tractable (FPT)? $f(d, \ell) \cdot p(|q|, |\mathcal{T}|, |\mathcal{A}|)$

Parameterized complexity of answering tree-shaped OMQs (\mathcal{T}, q) :

- \cdot parameters: depth *d* of \mathcal{T} , number ℓ of leaves in CQs
- **not FPT** if **depth** *d* taken as parameter

W[2]-hard

[BKKPRZ17]

· not FPT if number of leaves ℓ taken as parameter W[1]-hard

Message: for good performance, want d and ℓ small