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ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

patient data medical knowledge user query
“Melanie has listeriosis” “Listeriosis & Lyme disease “Find all patients with
“Paul has Lyme disease”  are bacterial infections”  bacterial infections”

expected answers: Melanie, Paul

Why use an ontology?

- extend the vocabulary (making queries easier to formulate)
- provide a unified view of multiple data sources
- obtain (by exploiting domain knowledge)
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SETTING FOR TODAY'S TALK

Conjunctive queries (CQs) ~ select-project-join queries in SQL
conjunctions of atoms, some variables can be existentially quantified

Jy. Faculty(x) A Teaches(x, y)

(find all faculty members that teach something)
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SETTING FOR TODAY'S TALK

Conjunctive queries (CQs) ~ select-project-join queries in SQL
conjunctions of atoms, some variables can be existentially quantified

Jy. Faculty(x) A Teaches(x, y)

(find all faculty members that teach something)

OWL 2 QL ontologies

- W3C standardized ontology language

- based upon DL-Liter description logic
- designed for querying large datasets

- simple yet useful language
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OWL 2 QL ONTOLOGIES

A (somewhat simplified) definition in FOL syntax

Ontology = finite set of FOL sentences (called axioms) of the forms:

vx (7(X) = 7'(x)) VX (T(X) AT'(x) = L)
vy (e, y) = o' (xy)) WXy (elx,y) Ad'(x.y) = L)
VX o(X, X) vx (o(x,x) — L)

where the formulas 7(x) and o(x, y) are defined by the grammars

T(X)  u= AX) | Iyelxy) (A unary predicate)
o(x,y) P(x,y) | P(y,x) (P binary predicate)

For readability, we'll drop the universal quantifiers
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EXAMPLE AXIOMS

Professors and fellows are subclasses of faculty

Prof(x) — Faculty(x) Fellow(x) — Faculty(x)
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Knowledge base (KB) = ontology O + dataset D (unary & binary facts)

Classical FOL semantics, based upon interpretations Z = (A%, %)

- function -Z maps each unary predicate A to AT C AZ, each binary
predicate R to RT C AT x A%, and each constant a to aZ € A*

- satisfaction of axioms, facts, or ground query in Z: as usual

= interpretation that
, facts not in the dataset can still be true

Certain answers of query g w.rt. KB (O, D):
- tuples of constants d (of same arity as g) such that
q(d) holds in every model of (O, D)
- corresponds to a form of entailment, we'll write O, D = q(d)

Ontology-mediated query answering: computing certain answers
6/31



OMQA EXAMPLE

Ontology:

Prof(x) — Faculty(x) Fellow(x) — Faculty(x)
Prof(x) — JyTeaches(x,y) 3IxTeaches(x,y)— Course(y)

Dataset:

{Prof(anna), Fellow(tom), Teaches(tom, cs101) }

Query: q(x) = 3Jy.Faculty(x) A Teaches(x, y)
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OMQA EXAMPLE

Ontology:

Prof(x) — Faculty(x) Fellow(x) — Faculty(x)
Prof(x) — JyTeaches(x,y) 3IxTeaches(x,y)— Course(y)

Dataset:

{Prof(anna), Fellow(tom), Teaches(tom, cs101) }

Query: q(x) = 3Jy.Faculty(x) A Teaches(x, y)

Get the following certain answers:
anna Prof(anna) + Prof(x) — Faculty(x) + Prof(x) — 3yTeaches(x,y)

- tom Fellow(tom) + Fellow(x) — Faculty(x) + Teaches(tom, cs101)
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CANONICAL MODELS

For Horn ontologies (no form of disjunction) like OWL 2 QL:
enough to consider a single canonical model

- idea: exhaustively apply ontology axioms to dataset
- possibly infinite (A(x) = 3yR(x,y), R(x,y) — A(y))
- forest-shaped (dataset + new tree structures for 3-axioms)

- give correct answer to all CQs
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For Horn ontologies (no form of disjunction) like OWL 2 QL:
enough to consider a single canonical model

- idea: exhaustively apply ontology axioms to dataset
- possibly infinite (A(x) = 3yR(x,y), R(x,y) — A(y))
- forest-shaped (dataset + new tree structures for 3-axioms)

- give correct answer to all CQs

OMQA in OWL 2 QL =

finding ways to
into
the
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COMPLEXITY OF OMQA

OMQA viewed as a decision problem (yes-or-no question):

INPUT: An n-ary query g, a dataset D, a ontology O,

and a candidate answer tuple d
QUESTION:  Does O, D = q(d)?

9/31



COMPLEXITY OF OMQA

OMQA viewed as a decision problem (yes-or-no question):

INPUT: An n-ary query g, a dataset D, a ontology O,
and a candidate answer tuple d

QUESTION:  Does O, D = q(d)?

. in terms of

Data complexity: in terms of size of D only
- view rest of input as fixed (of constant size)

- motivation: data typically much larger than rest of input

data complexity <
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QUERY REWRITING

Idea: reduce OMQA to database query evaluation
- rewriting step: ontology O + query g ~ first-order (SQL) query ¢’

- evaluation step: evaluate query g’ using relational DB system

Advantage: harness efficiency of relational database systems
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QUERY REWRITING

Idea: reduce OMQA to database query evaluation
- rewriting step: ontology O + query g ~ first-order (SQL) query ¢’

- evaluation step: evaluate query g’ using relational DB system

Advantage: harness efficiency of relational database systems

Key notion:
- FO query g’ is an FO-rewriting of OMQ (O, q) iff for every dataset D:
&

Informally:

Good news: every CQ and OWL 2 QL ontology has an FO-rewriting
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EXAMPLE: QUERY REWRITING

Reconsider the ontology O:

Prof(x) — Faculty(x) Fellow(x) — Faculty(x)
Prof(x) — JyTeaches(x,y) Teaches(x,y)— Course(y)

and the query g(x) = Jy.Faculty(x) A Teaches(x,y)
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EXAMPLE: QUERY REWRITING

Reconsider the ontology O:

Prof(x) — Faculty(x) Fellow(x) — Faculty(x)
Prof(x) — JyTeaches(x,y) Teaches(x,y)— Course(y)

and the query g(x) = Jy.Faculty(x) A Teaches(x,y)

The following query is a rewriting of g(x) w.rt. O:

q(x) Vv Prof(x) Vv 3y.Fellow(x) A Teaches(x,y)

Evaluating the rewritten query over the earlier dataset

{Prof(anna), Fellow(tom), Teaches(tom, cs101) }

produces the two certain answers: anna and tom
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QUERY REWRITING: THEORY AND PRACTICE

Data-independent reduction of OMQA to DB query evaluation
- inherit low data complexity (ACy C PTIME) of FO query evaluation
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QUERY REWRITING: THEORY AND PRACTICE

Data-independent reduction of OMQA to DB query evaluation
- inherit low data complexity (ACy C PTIME) of FO query evaluation

However, showed that
the generated !
- can be

To make the technique work in practice: want to generate reasonably
small rewritings that are not too difficult to evaluate

This raises the following questions:

Succinctness When can we guarantee polynomial-size rewritings?
Complexity More generally, when is OMQA tractable?
Optimality Can query rewriting achieve optimal complexity?

12/31



SUCCINCTNESS OF REWRITINGS
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EASY NEGATIVE RESULT FOR UCQ-REWRITINGS

Many of the proposed rewriting algorithms produce

Not hard to see smallest UCQ-rewriting may be exponentially large:

- Query: A9(x) A ... AAY(x)
- Ontology: Al(x) — A%(x) AL(X) = Ad(x) ... AL(X)— Ad(x)
+ Rewriting: Vi, iyeqon AJ(X) AAT(X) A .. AAY(X)

But: simple polysize FO-rewriting does exist! A4 (A2(x) v Al(X))

To get positive results, need to go beyond UCQs
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DIFFERENT FORMS OF REWRITINGS

PE-rewritings: positive existential queries (only 3, A, V)

(r(y) v s(y, X)) A(A(X) V (B(x) A3z p(x, 2))) A (A(Y) v (B(Y) ATz p(y, 2)))
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DIFFERENT FORMS OF REWRITINGS

PE-rewritings: positive existential queries (only 3, A, V)
(r6y) Vs(y, x)) A (A(X) V (B(x) A3z p(x,2))) A (A(Y) V (B(Y) ATz p(y, 2)))
NDL-rewritings: non-recursive Datalog queries

C]1(X,y), QZ(X)v q2(y) — gO&l(XJ/)
r(x,y) = qi(x,y) A(x) = Ga(X)
s(y,x) = gi(x,y) B(x), p(x,2) — qa(x)

FO-rewritings: first-order queries (can also use ¥, —)

What if we replace UCQs by PE / NDL / FO?
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FIRST NEGATIVE RESULTS [kkPz12]

Exponential blowup unavoidable for PE / NDL-rewritings

Formally: sequence of CQs g, and OWL 2 QL ontologies Oy, such that

- PE- and NDL-rewritings of (Op, gn) exponential in |gn| + |Ox
of (On,qn) unless NP /poly C NC'
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FIRST NEGATIVE RESULTS [kkPz12]

Exponential blowup unavoidable for PE / NDL-rewritings

Formally: sequence of CQs g, and OWL 2 QL ontologies Oy, such that

- PE- and NDL-rewritings of (Op, gn) exponential in |gn| + |Ox
of (On,qn) unless NP /poly C NC'

Key proof step: reduce CNF satisfiability to OMQA

- ontology generates full binary tree, leaves represent valuations
- depth of tree = number of variables

- tree-shaped query* selects valuation, checks clauses are satisfied
- number of leaves / branches in query = number of clauses

* tree-shaped (acyclic) = undirected graph induced by query is a tree
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RESTRICTING ONTOLOGY DEPTH [kkPz14], [BKKPZ18]

Depth of ontology =
maximum depth of generated trees in canonical model

- O has finite depth < applying axioms in O always terminates
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RESTRICTING ONTOLOGY DEPTH [kkPz14], [BKKPZ18]

Depth of ontology =
maximum depth of generated trees in canonical model

- O has finite depth < applying axioms in O always terminates

Does restricting ontology depth suffice for polysize rewritings?
Unfortunately not...

- no polysize FO-rewritings unless NP/poly C NC'

Depth 1 ontologies:

- no polysize PE- or NDL-rewritings

- no polysize FO-rewritings unless NL/poly C NC'

- but: polysize PE-rewritings for tree-shaped queries
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MAP OF RESULTS SO FAR

no poly PE but poly NDL

no poly FO unless NL/poly C NC!
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COMPLETING THE LANDSCAPE [BKP15], [BKKPZ1
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COMPLETING THE LANDSCAPE [BKP15], [BKKPZ18]

Strong negative result for PE-rewritings
- no polysize PE-rewritings for depth 2 ontologies + linear CQs

- polysize FO-rewritings exist iff
bounded depth + bounded treewidth CQs
bounded-leaf tree-shaped CQs
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COMPLETING THE LANDSCAPE [BKP15], [BKKPZ18]

Strong negative result for PE-rewritings
- no polysize PE-rewritings for depth 2 ontologies + linear CQs

- polysize FO-rewritings exist iff
bounded depth + bounded treewidth CQs
bounded-leaf tree-shaped CQs

Positive results for NDL-rewritings
- bounded depth ontology + bounded treewidth CQs
- bounded-leaf tree-shaped CQs (+ arbitrary ontology)

Takeaway: NDL good target language for rewritings
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BRIEF GLIMPSE AT PROOF TECHNIQUES (1)

Standard computational complexity not the right tool
- can be used to show no polytime-computable rewriting
- ... but not that no polysize rewriting exists
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- can be used to show no polytime-computable rewriting
- ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity

- branch of complexity that classifies Boolean functions wrt. size /
depth of Boolean circuits / formulas that compute them

- recall k-ary Boolean function maps tuples from {0, 1}* to {0, 1}

Example: function REACH,

- input: a Boolean vector representing the adjacency matrix of a
directed graph G with n vertices including special vertices s and t

- output: 1iff encoded graph G contains a directed path from s to t
No family of polysize mon. Boolean formulas computing REACH,,
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BRIEF GLIMPSE AT PROOF TECHNIQUES (2)
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BRIEF GLIMPSE AT PROOF TECHNIQUES (2)

AN
-rewritings (A, V)
-rewritings (v- and A-gates)
-rewritings (A, v, =)

Associate Boolean functions with ontology-mediated query (O, q)

‘Lower bound’ function f5% = lower bounds on rewriting size
- transform rewriting of (O, q) into formula / circuit that computesf 0

‘Upper bound’ function f = upper bounds on rewriting size
- transform formula / circuit that computes f5% into rewriting of (O, q)

Exploit circuit complexity results about (in)existence of small
formulas / circuits computing different classes of Boolean functions
- which functions expressible as f.'%, /fq for given OMQ class?

- intermediate computational model. hypergraph programs
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HYPERGRAPH PROGRAMS

A hypergraph program (HGP) is a hypergraph H = (V, E), where:
- vertices labelled by 0, 1, or literal (—=)p;
- input: valuation of pg, ..., pn

- outputs 1 < set of non-overlapping hyperedges that ‘covers all
zeros' (i.e. contains all vertices whose label evaluates to 0)

Restricted HGPs: monotone, , tree / linear

associated with
- vertices = atomsin g
- hyperedges = subqueries of g ‘relevant’ for O
- roughly: can be satisfied by tree-shaped structure of canonical model
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BACK TO GLIMPSE AT PROOF TECHNIQUES

Upper bound function Lower bound function
for class C of OMQs for class C of OMQs

computed by computed by
polysize polysize

Class of
hypergraph
programs

I characterizes

Circuit
complexity
class
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BACK TO GLIMPSE AT PROOF TECHNIQUES

C = OMQs with bounded-leaf CQs C = OMQs with linear CQs, depth 2 ontologies

Upper bound function Lower bound function
for class C of OMQs for class C of OMQs

computed by computed by
polysize polysize

(monotone) Class of Positive result for NDL
linear HGPs = hypergraph
bounded-leaf HGPs programs mNL/poly ~~ polysize
mon. circuit
I characterizes .
Negative result for PE
Circuit REACH €mNL/poly
(m) NL/poly complexity REACH ZmNC!
class
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COMPLEXITY AND OPTIMALITY




WHAT DOES ALL THIS MEAN FOR THE COMPLEXITY OF OMQA?

Small rewritings do not guarantee low combined complexity

- need to consider cost of producing and evaluating the rewriting

Large rewritings do not guarantee high combined complexity

- maybe query rewriting is not the most efficient approach
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WHAT DOES ALL THIS MEAN FOR THE COMPLEXITY OF OMQA?

Small rewritings do not guarantee low combined complexity

- need to consider cost of producing and evaluating the rewriting

Large rewritings do not guarantee high combined complexity

- maybe query rewriting is not the most efficient approach

Motivated the study of the

Focus on combined complexity (data complexity same in all cases)

26/31



COMBINED COMPLEXITY LANDSCAPE FOR DL-LITE  [BKP15], [BKKPZ18]
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COMPARING SUCCINCTNESS & COMPLEXITY LANDSCAPES
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TBox depth

polysize NDL-rewritings ~ polynomial (LOGCFL / NL) complexity

Can we marry the positive succinctness & complexity results?
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OPTIMAL NDL-REWRITINGS [BKKPRZ17]

For the three well-behaved classes of OMQs, define
NDL-rewritings of optimal complexity:

- rewriting can be constructed by L¢ transducer
- evaluating the rewriting can be done in C
with C € {NL, LOGCFL} the complexity of the OMQ class
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OPTIMAL NDL-REWRITINGS [BKKPRZ17]

For the three well-behaved classes of OMQs, define
NDL-rewritings of optimal complexity:

- rewriting can be constructed by L¢ transducer
- evaluating the rewriting can be done in C
with C € {NL, LOGCFL} the complexity of the OMQ class

Preliminary experiments with simple OMQs (depth 1, linear CQs):
- compared with other NDL-rewritings (Clipper, Rapid, Presto)

- our rewritings grow linearly with increasing query size

- other systems produce rewritings that grow exponentially

Take-away: optimal complexity achievable via query rewriting
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CONCLUSION




CONCLUSION

Ontology-mediated query answering:
- new paradigm for intelligent information systems

- offers many advantages, but also computational challenges

Many interesting problems related to OMQA and query rewriting:

- succinctness of rewritings (Boolean functions, circuit complexity)
- existence of FO and Datalog rewritings (automata, CSP)

- other tools: parameterized complexity, word rewriting

Active area with lots left to explore!

31/31



QUESTIONS?
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WHAT IS LOGCFL?

Original definition: class of decision problems logspace-reducible to
the membership problem for context-free languages

Characterization in terms of circuits: solvable by uniform family of
polysize, logarithmic-depth circuits, whose AND gates have fan-in 2
(called SAC! circuits)

Yet another definition: problems solvable by non-deterministic
polytime logspace-bounded TM augmented with a stack

Relationship to other classes:

LOGSPACE C NL C CNC®CPCNP

Considered highly parallelizable
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LOGCFL MEMBERSHIP FOR BOUNDED-LEAF QUERIES

Devise procedure that can be implemented by non-deterministic
polytime logspace-bounded TM augmented with a stack
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LOGCFL MEMBERSHIP FOR BOUNDED-LEAF QUERIES

Devise procedure that can be implemented by non-deterministic
polytime logspace-bounded TM augmented with a stack

Idea: guess homomorphism into canonical model, use stack to store
word part w of domain element aw in canonical model

Difficulty: need to store several words, but have only one stack!

Solution: ‘synchronize’ traversal of different branches
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LOGCFL-HARDNESS FOR LINEAR QUERIES

decide whether an input of length n is accepted by the nth circuit of
a logspace-uniform family of SAC' circuits

Use characterization of acceptance in terms of proof trees:
- associate skeleton proof tree Skelc to each circuit C
- label each node in skeleton with gate from C

- circuit C accepts input o < valid labelling of Skelc

- labelling respects the structure of C
- leaves in Skelc mapped to input gates which are 1 under o
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LOGCFL-HARDNESS FOR LINEAR QUERIES

: decide whether an input
of length n is accepted by the nth circuit of a logspace-uniform
family of SAC circuits

Use characterization of acceptance in terms of proof trees:
- associate skeleton proof tree Skel¢ to each circuit C

- label each node in skeleton with gate from C

- circuit C accepts input o < valid labelling of Skel¢

- labelling respects the structure of C
- leaves in Skelc mapped to input gates which are 1 under o

Sketch of reduction:

- TBox generates tree-unfolding of circuit C, input gates marked 1, 0
- linear query corresponds to depth-first traversal of Skel¢

- query holds < valid labelling of Skelc
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PARAMETERIZED COMPLEXITY [BKKPRZ17]

Upper bound on
/ number of

Is it possible to do better?
- formally: fixed-parameter tractable (FPT)? f(d,0) - p(lql, 1T, |A])

Parameterized complexity of answering tree-shaped OMQs (7, q):
- parameters: depth d of 7, number ¢ of leaves in CQs
- not FPT if depth d taken as parameter WI[2]-hard

- not FPT if number of leaves ¢ taken as parameter W[1]-hard

Message: for good performance, want d and ¢ small
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