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Introduction

I A given graph has to be protected against communication

interruption, via prevention measures, or via insurance.

I Graph = Company’s computer network, susceptible to exterior

attacks.

I Or... Interconnected data, in the form of a graph → susceptible to

data breaches, which can be insured.

I Question: impact of the topology of the network on the chosen

protection?
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Introduction

I Nodes can represent: computers, servers, softwares, routers, data

sets, etc.

I Edges can be: internet connections, distant access to servers, links

between softwares etc.

• •

•

•

•

•

•
•

(a) A graph on n = 7 vertices,
with 8 edges.

•

•

•

••

•

• • •

• • •

(b) A 3-regular graph on n = 12
vertices.
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Outline of the talk

I The SIS model.

I An optimization criteria: the algebraic connectivity.

I Solution and numerical illustrations.
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Literature

I Economics of information security (Gordon and Loeb 2002, Böhme

2013).

I Insurability of cyber risk (Eling 2020’s)

I Cyber claims pricing (Fahrenwaldt & al 2018, Xu and Hua 2019)

I Impact of the network’s topology (Hillairet & al 2021, Hillairet and

Lopez 2021)

I Statistical inference (Bessy-Rolland & al 2020 , Farkas & al 2021)

I And in practice ? (Romanosky &al 2019, Malavasi & al 2021)

I Eigenvalues optimization, epidemic models (refs. in the paper).
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Outline of the talk

I The SIS model.

I An optimization criteria: the algebraic connectivity.

I Solution and numerical illustrations.
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Inhomogeneous Suseptible-Infected-Susceptible
(SIS) model on Edges.

I State at time t of edge i is Bernoulli: Xi (t) = 0 when edge i is

healthy and Xi (t) = 1 when edge i is infected.

I When infected, edge i can infect each edge j sharing a common

vertex with rate βij > 0.

I Each edge i can be cured, i.e. its state Xi jumps from 1 to 0 at rate

δi > 0.

I The Poisson infection and curing processes are assumed independent.
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Epidemic model

Inhomogeneous Suseptible-Infected-Susceptible (SIS) model.

• •

•

•

•

•

•
•

No edge is infected.
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Epidemic model

Inhomogeneous Suseptible-Infected-Susceptible (SIS) model.

• •

•

•

•

•

•
•

Red edge i is infected, and can be cured at rate δi > 0.
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Epidemic model

Inhomogeneous Suseptible-Infected-Susceptible (SIS) model.

• •

•

•

•

•

•
•

Edge i infects each blue edge j at rate βij > 0.
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Epidemic model

I We use 2 simplifying approximations:

I N-Intertwined Mean Field Approximation (Kooij, Omic, Van

Mieghem 2008): upper bounds the infection probabilities.

I Long time steady state: which is accurate when infection

probabilities are high, corresponding to cascading infections.
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Epidemic model - Approximations

Let ã = edge adjacency matrix and m = number of edges.

Xi (t + ∆t)− Xi (t)

∆t
= (1− Xi (t))

m∑
j=1

ãijβijXj(t)− δiXi (t).

leads to

dvi (t)

dt
=

m∑
j=1

ãijβijvj(t)−
m∑
j=1

ãijβijE[Xi (t)Xj(t)]− δivi (t),

where vi (t) = P(Xi (t) = 1).
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I System of m coupled ODEs.

I System of m 2m − 1 coupled ODEs.

I Curse of dimensionality!
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Epidemic model - Approximations

N-Intertwined Mean Field Approximation:

dvi (t)

dt
=

m∑
j=1

ãijβijvj(t)−
m∑
j=1

ãijβijE[Xi (t)]E[Xj(t)]− δivi (t),

i.e

dvi (t)

dt
=

 m∑
j=1

ãijβijvj(t)

 (1− vi (t))− δivi (t), i = 1, . . . ,m.
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Epidemic model - Approximations

N-Intertwined Mean Field Approximation and Long time steady state:

dvi (t)

dt
= 0 =

 m∑
j=1

ãijβijvj(t)

 (1− vi (t))− δivi (t), i = 1, . . . ,m.

i.e.

vi =
β
∑m

j=1 ãijvj

δi + β
∑m

j=1 ãijvj
, i = 1, . . .m,

where βij = β.
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ãijβijvj(t)

 (1− vi (t))− δivi (t), i = 1, . . . ,m.

i.e.

vi =
β
∑m

j=1 ãijvj
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Optimization Problem

I Control the vector of curing rates (δ1, . . . , δm) to make the graph as

connected as possible, in a situation of cascading infections.

I Stand Alone Cyber Contracts: clauses of repairing actions, through

the intervention of a specified cyber security company.

I Prevention or cyber hygiene measures: back-ups, users training,

network mapping and inventory etc.

I How should we measure the "connectedness" of a given graph G?
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Outline of the talk

I The SIS model.

I An optimization criteria: the algebraic connectivity.

I Solution and numerical illustrations.
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Optimization Criteria

I Given a graph G with adjacency matrix A and degree matrix D, the

Laplacian matrix of G is given by L := D− A.

I For x ∈ Rn (n= number of nodes), xTLx =
∑

(i,j)∈E (xi − xj)
2.
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Laplacian matrix: example

• •

•

•

•

•

•
•

Choose a numbering of the nodes.
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Laplacian matrix: example

• •

•

•

•

•

•
•

3 4

5

6

1

2
7
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Laplacian matrix: example

• •

•

•

•

•

•
•

3 4

5

6

1

2
7

L =



2 −1 −1 0 0 0 0

−1 2 0 −1 0 0 0

−1 0 3 −1 0 −1 0

0 −1 −1 3 −1 0 0

0 0 0 −1 3 −1 −1
0 0 −1 0 −1 2 0

0 0 0 0 −1 0 1


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Optimization Criteria

I Given a graph G with adjacency matrix A and degree matrix D, the

Laplacian matrix of G is given by L := D− A.

I For x ∈ Rn (n= number of nodes), xTLx =
∑

(i,j)∈E (xi − xj)
2.

I Algebraic connectivity λ2(G )= lowest strictly positive eigenvalue

of the Laplacian matrix.

I Known to describe the "connectedness" of a graph (Fiedler 1973).
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Optimization Criteria

(a) A graph G , such that λ2(G) = 0.298.

(b) A graph G̃ , such that λ2(G̃) = 1.

Figure: The lower graph G̃ is "more connected" than the upper graph G .

23/36



Optimization Criteria

Figure: Complete graph K10 with λ2(K10) = 10.
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Optimization Problem

1. Consider a SIS epidemic model on the edges of a graph G , for a long

time.

2. We obtain a random graph G̃∞, with less edges.

3. Consider the associated random Laplacian matrix L∞ and its

average L := E[L∞].

4. Maximize the algebraic connectivity of L:

maximize
δ∈A

λ2(L)

subject to c(δ) ≤ B,

where c is a cost function, B a given budget constraint, and A an

admissible set of curing rates.
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Budget constraint

1. Edge i interrupted → loss Zi with E[Zi ] = ci , with (Z1, . . . ,Zm)

independent and independent of the underlying SIS process.

2. W (δ) = total loss on the graph, when the curing rates are given by

δ ∈ Rm.

3. δ0 = curing rates before any insurance or prevention.

4. The insurance cost function c : Rm
+ → R+ is given by

c(δ) := ϕ {E[W (δ0)]− E[W (δ)]} , (1)

where ϕ : R+ → R+ is non decreasing.
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Outline of the talk

I The SIS model.

I An optimization criteria: the algebraic connectivity.

I Solution and numerical illustrations.
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A Solution
Theorem
An optimal solution is given by

δ?i =

β m∑
j=1

ãijv
?
j

 1− v?i
v?i

,

where (1− v?1 , . . . , 1− v?m) is the w component of a solution to the
following convex problem in γ ∈ R, µ ∈ R and w ∈ Rm:

sup γ

subject to L(w)− γI + µ11t < 0
0 ≤ w ≤ 1
m∑
j=1

cjwj ≤ B,

where 1t := (1, . . . , 1) ∈ Rn, L(w) denotes the Laplacian matrix of the
weighted graph (V ,E0,w), M < 0 means that M is positive semidefinite
and (ãij)a≤i,j≤m are the entries of the edge-adjacency matrix.
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Idea

Reformulate the problem on δ as a problem on v !

Lemma 1
L = E[L∞] is the Laplacian matrix associated to the weighted graph

G = (V ,E0, v), where each edge ` is given the weight v ` = 1− v`, with

(v1, . . . , vm) satisfying the steady state equation.

Lemma 2

E[W (δ0)]− E[W (δ)] =
m∑
j=1

cjv j .

In particular, the cost function c given in (1) is a convex function of v .
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Examples

Figure: Erdös-Rényi Random Graph with 102 edges. The dotted edges have
optimal δ equal to 0.

Solved with the CVX Matlab Package (Boyd, Grant).
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Examples

Figure: Each edge width is proportional to the optimal δ.
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Examples

Figure: Erdös-Rényi Random Graph with 1004 edges. Red edges have null δ?

values.
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Examples

Figure: Each edge width is proportional to the optimal δ.
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Examples

Figure: δ? values, for a graph with 24978 edges.
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Perspectives

I Finite horizon problem and dynamic optimization: stochastic control

problem! (Avoids both NIMFA and Steady state approximations)

I Inhomogeneous fast mixing Markov chains (Boyd, Diaconis, Sun,

Xiao).

I Simulation and (optimal) importance sampling for Markov chains.

I Optimal stochastic control and games on networks.
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Merci de votre attention
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