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Introduction

» A given graph has to be protected against communication
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» Graph = Company's computer network, susceptible to exterior
attacks.
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A given graph has to be protected against communication

interruption, via prevention measures, or via insurance.

Graph = Company’s computer network, susceptible to exterior

attacks.

Or... Interconnected data, in the form of a graph — susceptible to

data breaches, which can be insured.

Question: impact of the topology of the network on the chosen

protection?



Introduction

» Nodes can represent: computers, servers, softwares, routers, data

sets, etc.

» Edges can be: internet connections, distant access to servers, links

between softwares etc.

(a) A graph on n =7 vertices, (b) A 3-regular graph on n =12
with 8 edges. vertices.
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Outline of the talk

» The SIS model.
» An optimization criteria: the algebraic connectivity.

» Solution and numerical illustrations.
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Economics of information security (Gordon and Loeb 2002, Béhme
2013).

» Insurability of cyber risk (Eling 2020's)
» Cyber claims pricing (Fahrenwaldt & al 2018, Xu and Hua 2019)

Impact of the network's topology (Hillairet & al 2021, Hillairet and
Lopez 2021)

Statistical inference (Bessy-Rolland & al 2020 , Farkas & al 2021)

> And in practice ? (Romanosky &al 2019, Malavasi & al 2021)

Eigenvalues optimization, epidemic models (refs. in the paper).
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Inhomogeneous Suseptible-Infected-Susceptible
(SIS) model on Edges.

> State at time t of edge i is Bernoulli: X;(t) = 0 when edge i is
healthy and X;(t) = 1 when edge i is infected.
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> State at time t of edge i is Bernoulli: X;(t) = 0 when edge i is
healthy and X;(t) = 1 when edge i is infected.

» When infected, edge i can infect each edge j sharing a common

vertex with rate 3; > 0.

» Each edge i can be cured, i.e. its state X; jumps from 1 to 0 at rate
5,’ > 0.

» The Poisson infection and curing processes are assumed independent.



Epidemic model

Inhomogeneous Suseptible-Infected-Susceptible (SIS) model.

No edge is infected.
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Epidemic model

Inhomogeneous Suseptible-Infected-Susceptible (SIS) model.

Red edge / is infected, and can be cured at rate §; > 0.
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Epidemic model

Inhomogeneous Suseptible-Infected-Susceptible (SIS) model.

Edge i infects each blue edge j at rate 8; > 0.
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» We use 2 simplifying approximations:
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Epidemic model

» We use 2 simplifying approximations:
» N-Intertwined Mean Field Approximation (Kooij, Omic, Van
Mieghem 2008): upper bounds the infection probabilities.

» Long time steady state: which is accurate when infection

probabilities are high, corresponding to cascading infections.
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Epidemic model - Approximations

Let 3 = edge adjacency matrix and m = number of edges.

AEL LX) _ (- x0) Y ai(0) - 5iX(0)
j=1
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Epidemic model - Approximations

Let 3 = edge adjacency matrix and m = number of edges.

AEL LX) _ (- x0) Y ai(0) - 5iX(0)
j=1

leads to

d\i;gt) =" aBvi(e) = > FBEX()X(£)] - divi(t),

j=1 j=1

where v;(t) = P(X;(t) = 1).
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Epidemic model - Approximations

vi(t) = P(X;(t) = 1) and

dv,(t

Zauﬁu‘ﬁ ZauﬁuE[X £)X;()] — divi(t).

» System of m coupled ODEs.
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Epidemic model - Approximations

vi(t) = P(X;(t) = 1) and

dv,(t

Zauﬁuvj Zauﬁu]E[X t)Xj(£)] = bivi(t)-

» System of m coupled ODEs.
» System of ## 2™ — 1 coupled ODEs.

» Curse of dimensionality!
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Epidemic model - Approximations

N-Intertwined Mean Field Approximation:

dV’ Z aljﬁljvj Z auBUE[X ]E[X ()] - (5,'V,'(1.'),

14/36



Epidemic model - Approximations

N-Intertwined Mean Field Approximation:

dvéﬁt)_;auﬂuvj Ezlaum[x NED(8)] - 6vi(1),

dvi(t) . - ] . .
e (;auﬁuvj(t)) (1=vi(t))=divi(t), i=1,...,m.

14/36



Epidemic model - Approximations

N-Intertwined Mean Field Approximation and Long time steady state:

dV' —0= Zauﬁuvj (1—vi(t) = dwi(t), i=1,....m.
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Epidemic model - Approximations

N-Intertwined Mean Field Approximation and Long time steady state:

dV' —0= Zauﬁuvj (1—vi(t) = dwi(t), i=1,....m.

m ~
B2 i1 35V .
Vi=——t 0 —— i=1...m,

O+ B30 &y

where §j; = 5.
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Optimization Problem

» Control the vector of curing rates (d1,...,d,) to make the graph as

connected as possible, in a situation of cascading infections.
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Control the vector of curing rates (01, ...,0m) to make the graph as

connected as possible, in a situation of cascading infections.

Stand Alone Cyber Contracts: clauses of repairing actions, through

the intervention of a specified cyber security company.

Prevention or cyber hygiene measures: back-ups, users training,

network mapping and inventory etc.

How should we measure the "connectedness" of a given graph G7



Outline of the talk

» The SIS model.
> An optimization criteria: the algebraic connectivity.

» Solution and numerical illustrations.
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Optimization Criteria

> Given a graph G with adjacency matrix A and degree matrix D, the
Laplacian matrix of G is given by L := D — A.

» For x € R" (n= number of nodes), x” Lx = > ipyee(xi — xj)?.
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Laplacian matrix: example
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Laplacian matrix: example

Choose a numbering of the nodes.

19/36
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Optimization Criteria

» Given a graph G with adjacency matrix A and degree matrix D, the
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Optimization Criteria

» Given a graph G with adjacency matrix A and degree matrix D, the
Laplacian matrix of G is given by L := D — A.

» For x € R" (n= number of nodes), x” Lx = > ipyee(xi — x;)?.

» Algebraic connectivity \»(G)= lowest strictly positive eigenvalue

of the Laplacian matrix.

» Known to describe the "connectedness" of a graph (Fiedler 1973).
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Optimization Criteria

(a) A graph G, such that X\>(G) = 0.298.

(b) A graph G, such that A2(G) = 1.
Figure: The lower graph G is "more connected" than the upper graph G.
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Optimization Criteria

Figure: Complete graph Kio with A2(Kio) = 10.
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Optimization Problem

1. Consider a SIS epidemic model on the edges of a graph G, for a long

time.
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Optimization Problem

1. Consider a SIS epidemic model on the edges of a graph G, for a long

time.
2. We obtain a random graph Goo, With less edges.

3. Consider the associated random Laplacian matrix L., and its
average L :=E[Ly].

4. Maximize the algebraic connectivity of L:

" (L
maximize 2(L)

subject to  ¢(8) < B,

where c is a cost function, B a given budget constraint, and A an

admissible set of curing rates.
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Budget constraint

1. Edge i interrupted — loss Z; with E[Z;] = ¢;, with (Z4,...,Zp)
independent and independent of the underlying SIS process.

2. W(9) = total loss on the graph, when the curing rates are given by
0 e R™.

3. 0p = curing rates before any insurance or prevention.
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Budget constraint

1. Edge i interrupted — loss Z; with E[Z;] = ¢;, with (Z4,...,Zp)
independent and independent of the underlying SIS process.

2. W(9) = total loss on the graph, when the curing rates are given by
0 e R™.
3. 0p = curing rates before any insurance or prevention.

4. The insurance cost function c : R — R is given by
c(8) := ¢ {E[W(b0)] — E[W ()]}, (1)

where ¢ : R; — R, is non decreasing.
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Outline of the talk

» The SIS model.
» An optimization criteria: the algebraic connectivity.

» Solution and numerical illustrations.
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A Solution
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Theorem
An optimal solution is given by

1—v

m

* oK

5/ - ﬂ E aljvj * )
: v;
Jj=1

I

> ) is the w component of a solution to the
following convex problem in v € R, u € R and w € R™:

where (1 —v{,...,1— v}



A Solution

Theorem
An optimal solution is given by

1—v

m

*x 3.0

5/ - ﬂ E aljvj * )
; v;
Jj=1

I

> ) is the w component of a solution to the
following convex problem in v € R, u € R and w € R™:

where (1 —v{,...,1— v}

sup
subject to  L(w) —y/ + ullt =0
0<w<l1

m
DG < B,
j=1

where 1* := (1,...,1) € R", L(w) denotes the Laplacian matrix of the
weighted graph (V, Eg, w), M = 0 means that M is positive semidefinite

and (&j)a<i j<m are the entries of the edge-adjacency matrix.
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Idea

Reformulate the problem on ¢ as a problem on v!

Lemma 1
L = E[L] is the Laplacian matrix associated to the weighted graph
G = (V, Ey, V), where each edge ¢ is given the weight v, = 1 — vy, with

(va,..., vm) satisfying the steady state equation.
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Reformulate the problem on ¢ as a problem on v!

Lemma 1
L = E[L] is the Laplacian matrix associated to the weighted graph
G = (V, Ey, V), where each edge ¢ is given the weight v, = 1 — vy, with

(va,..., vm) satisfying the steady state equation.

Lemma 2

E[W(8)] — E[W(S)] = > _ gv;.

j=t

In particular, the cost function ¢ given in (1) is a convex function of v.



Examples
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Figure: Erdés-Rényi Random Graph with 102 edges. The dotted edges have
optimal § equal to 0.

Solved with the CVX Matlab Package (Boyd, Grant).
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Examples
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: Each edge width is proportional to the optimal 4.

Figure



Examples

values.

Figure: Erdés-Rényi Random Graph with 1004 edges. Red edges have null 6*
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Examples

Figure: Each edge width is proportional to the optimal 4.
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Examples
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Figure: §* values, for a graph with 24978 edges.



Perspectives

» Finite horizon problem and dynamic optimization: stochastic control

problem! (Avoids both NIMFA and Steady state approximations)
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» Finite horizon problem and dynamic optimization: stochastic control

problem! (Avoids both NIMFA and Steady state approximations)
» Inhomogeneous fast mixing Markov chains (Boyd, Diaconis, Sun,
Xiao).
» Simulation and (optimal) importance sampling for Markov chains.

» Optimal stochastic control and games on networks.



Merci de votre attention
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