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Goals in Al

» Ultimate goal: Build systems that can learn by exploring the world
— Unfortunately not easy or almost impossible for now
» Intermediate goal: Build systems that can classify and recognize
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» Solution: Use Machine learning (ML) methods = near-human
performance

machine
training data learning testing data

model



Issues of Traditional ML

Issues:
- near-human performance is achieved using lots of labeled data

- Some tasks do not have that much labeled data (biology, physics
etc) — sample bias

- Some data/tasks evolve with time

- There exist too many tasks!



Issues of Traditional ML

Issues:
- near-human performance is achieved using lots of labeled data

Some tasks do not have that much labeled data (biology, physics
etc) — sample bias

Some data/tasks evolve with time

There exist too many tasks!

Solution: Transfer learning
+ Use systems build for different but related applications

This will help
Paul with his car, r,\,\r«-"
| know | can use pobiei,. | bet Morm can use
it here in math.., this in her computer
’[‘ science class, too!
N

Oh, | getit. | wonder how else | can
use this2...




Transfer Learning

Definition [Pan, TL-1JCAI'13 tutorial]

Ability of a system to recognize and apply knowledge and skills learned in
previous domains/tasks to novel domains/tasks

An example
e We have labeled images from a Web image corpus

e |s there a Person in unlabeled images from a Video corpus ?

Person no Person Is there a Person?



Domain Adaptation problem - object detection

Amazon
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Probability Distribution Functions over the domains.

Our context

» Classification problem with data coming from different sources
(domains).

» Distributions are different but related.



Domain adaptation problem - object detection
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Feature extraction l + Labels Feature extraction l no labels !

b A

Source Domain Target Domain

Problems
» Labels only available in the source domain, and classification is
conducted in the target domain.

» Classifier trained on the source domain data performs badly in the
target domain: training and test distributions are different!



Domain adaptation problem - spam filtering

We aim at learning a spam filter from the mailing box of Bob and
deploying the model over the emails received by Alice.
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Domain adaptation problem - sentiment analysis
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Electronics

Electronics Kitchen

Video games
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(1) Compact; easy to operate; very
good picture quality; looks sharp!

(3) I purchased this unit from Circuit
City and | was very excited about the
quality of the picture. It is really nice
and sharp.

(5) It is also quite blurry in very dark
settings. | will never_buy HP again.

(2) A very good game! It is action
packed and full of excitement. | am
very much hooked on this game.

(4) Very realistic shooting action and
good plots. We played this and were
hooked.

(6) It is so boring. | am extremely
unhappy and will probably never_buy
UbiSoft again.

» Source specific: compact, sharp, blurry.

» Target specific: hooked, realistic, boring.

» Domain independent: good, excited, nice, never_buy, unhappy.




Other examples of applications

> Speech recognition: Adapt > Action recognition
to different accents

Action recognition
Speach recognition
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> Object Detection

» Document categorization

» medecine, physics, NLP, ...

Images from [Csurka et al., 2017]



Does it work?

Yes it helps! [Courty el al., 2017]

Domains Base SurK SA ARTL OT-IT OT-MM Tloss
caltech—amazon 92.07 91.65 90.50 92.17 89.98 92.59 91.54
caltech—webcam 76.27 77.97 81.02 80.00 80.34 78.98 88.81

caltech—dslr 84.08 82.80 85.99 88.54 78.34 76.43 89.81
amazon—>caltech 84.77 84.95 85.13 85.04 85.93 87.36 85.22
amazon—webcam 79.32 81.36 85.42 79.32 74.24 85.08 84.75

amazon—dslr 86.62 87.26 89.17 85.99 77.71 79.62 87.90
webcam—>caltech 71.77 71.86 75.78 72.75 84.06 82.99 82.64
webcam—-amazon 79.44 78.18 81.42 79.85 89.56 90.50 90.71

webcam—dslr 96.18 95.54 94.90 100.00 99.36 99.36 98.09

dslr—caltech 77.03 76.94 81.75 78.45 85.57 83.35 84.33

dslr—amazon 83.19 82.15 83.19 83.82 90.50 90.50 88.10

dslr—webcam 96.27 92.88 88.47 98.98 96.61 96.61 96.61

Mean 83.92 83.63 85.23 85.41 86.02 86.95 89.04
Mean rank 5.33 5.58 4.00 3.75 3.50 2.83 2.50
p-value < 0.01 < 0.01 0.01 0.04 0.25 0.86 -
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Definition

>

> A first approach: co-variate shift

» When domain adaptation can work
» Some Domain Adaptation methods

> |terative approaches

» Optimal Transport

> Subspace Alignment

> A quick work on Deep learning

» Hypothesis Transfer Learning

Acknowledgements: Basura Fernando, Nicolas Courty, Rémi Flamary, Pascal
Germain, Emilie Morvant, Michaél Perrot, JP Peyrache, levgen Redko, Marc Sebban



Transfer Learning/Domain
Adaptation



Definition (Pan and Yang 2010)

Given a source domain S and learning task Ys, a target domain T and
learning task Y7, transfer learning aims to help improve the learning of
the target predictive function fr- in Dy using the knowledge in S and T,
where S # T or Ys # Yr.

Multi-source Adaptation

No target labelled
N data
Hypothesis o
Transfer
Labeled target

data available

No labeled Self-taught Learning
Transfer Lea \
Tabeled target Labeled source Multi-task Learning

data are available

Sample Bias/Covariate Shift

No source data

source hypothesis available

data are available

Different domains

Labeled source

data are available Transfer Learning

Transfer Learning

No labeled data

Single domain

Unsupervised
Transfer Learning



Classic setting in domain adaptation

Statistical learning

> A feature space X, label set Y = {—1,1}.
Ps distribution over X x ), Pt distribution over X' x )

» An unknown labeling function f : X — ) that follows Pr(y|x)

» A source training set LS = {(x1,y1),- -+, (Xm, Ym)} C (X — V)7
drawn i.i.d. from Ps.

A target unlabeled set LT = {x;}, drawn i.i.d. from the marginal
P+ over X Dt

» Learn a classifier (or a hypothesis) h € H C V¥ as close as possible
to the unknown function f.

> True source risk: es(h) = E ,)~p.[h(x) # y],
Empirical source risk over LS: €s(h) = -, )< s[h(x) # y].
True target risk: e7(h) = E(x )~p, [h(x) # y]

complexity(he)

Classic guarantee in supervised ML: e¢s(h) < és(h) + T3]

= but we want to be good on Pr



Main strategies in DA

Instance/Hypothesis weighting
— Sample bias
— Covariate shift

Statistical earning Theory

Representation Learning
— Domain invariant features

Iterative Models — Latent features

EM-based methods/Boosting



Reweighting methods



A first analysis

er(h) = E  [Ax) ]
Ps(xt yt)
= E == Y [h(x! ¢
rtyepy PG, yi) 10D 7 Y]

= 3 Pr(xty PSEX ig [h(xt) £ y']
)

Pr(x*,y")

= E 1 [h(x* t
(Xt7yt)NPs Ps(Xt,yt) [ ( ) 7£ y }

Assume similar tasks - covariate shift, Ps(y|x) = Pr(y|x), then:

B Dr()Priy ) o,
= esbrs D) Pa(y ) L) 7]
_ E DT(X) [ (Xt) #yt]

 (xty~Ps Ds(xt)




Covariate shift [Shimodaira,’00]
= With covariate shift, Ps(y|x) = P7(y|x), we have:

Dr(x!)
= ek E 1A #y"
(Xf)NDS DS(Xt)ytNPs(yfle) [ ( )# y ]
= weighted error on the source domain: w(x") = g;g::))

Idea: reweight labeled source data according to an estimate of w(x"):

E  w(x")I[h(x!) # y']

(xt,y*)~Ps

Learn a classifier on a sample reweighted w.r.t. &
D GG)IA(x) # ¥7]

(5.y7)es



Bad news

» DA is hard, even under covariate shift [Ben-David et al.,ALT'12]
= To learn a classifier the number of examples depend on |H|
(finite) or exponentially on the dimension of X

» Co-variate shift assumption may fail:
Tasks are not similar in general Ps(y|x) # Pr(y|x)

+ 4+ + H=F + + F




When domain adaptation
can work?



Theoretical guarantees

Theoretical bounds [Ben-david et al., 2007,2010]

The error performed by a given classifier h in the target domain er(h) is
upper-bounded by the sum of three terms :
er(h) < es(h) 4+ Div(ps, pre) + A

> Error of the classifier in the source domain es(h)
— can be optimized efficiently with supervised ML

» Divergence measure between the two domains Div( s, fit)
— key element to care about

» A third term measuring how much the classification tasks are related
to each other.
— Cross fingers and hope that it is small

= A natural approach is then to move closer the two distributions
while ensuring a low-error on the source domain



A Strong Assumption!

When can it work? - small \

> )\ = €T(h*) + eg(h*)
with h* = argmin,c,e7(h) + es(h) [Ben-David et al., 2007;2010]

= There must exist a good hypothesis on the two domains (relatedness),
or two good hypotheses -one on each domain- and close with respect to

the target distribution [Mansour et al., 2009]
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Divergences

H-divergence/Discrepancy

> Related to the hypothesis class H

dupgi(Ds, D) = sup |er(h,h') —es(h, H)

(h,h")eH?

[A(x¢) # 1)

E [h(x") # W (x)] -

XS~ DS

» = Adaptation is better if domains cannot be distinguished with
respect to H

» Allows one to derive uniform convergence-like bounds
(VC-dimension) or Rademacher bounds.



Divergences

Weighted average over H
> averaged distance dis,(Ds, D7) = i hE [Rp,(h,h") = Rps(h, h')]
sh~p

» Similar generalization bound
hE Rp,(h) < hE Rps(h) +dis,(Ds, D1) + A,
~p ~p

Controlled by PAC-Bayesian theory [Germain et al., 13;16]

Without the Hypothesis class

» Maximum Mean Discrepancy [Huang et al.,06]
MMD(Ds,Dr)=| E ¢(x°) = E ¢(x)]
xS~ Ds xt~Dt

> Rényi Divergence [Mansour et al., UAI'09]

Do(Ds, D7) = Z



Adjusting/Iterative
methods



Principle

> Integrate some information about the target samples iteratively
= use of pseudo-labels

> “Move” closer distributions
= Remove/add some instances = take into account a divergence
measure

> Repeat the process until convergence or no remaining instances

(e.g. DASVM [Bruzzone et al.,'10])




Convergence ?

Almost no theoretical guarantees

» Weak classifier assumption: each new classifier must do better than
random guessing on the data it has been learned from on both
domains

» At least one classifier must do better than no adaptation during
iterations

» Control the balance between classes
> Use “soft” labels (limit negative transfer)

» Other idea: reverse validation.

LS TS 1 Learning of TS
++++' *e o hy from LSU TS ®ee,
+ - .- .0 * m '. .0 °

h, .

> LS 2 Auto Labeling
+ + . of TS with h,

++
+ Z
- T
4 Evaluation h 4_/ _- ="
ofh onlLS

Learn/ng of

by cross-validation h] from TS auto labeled



Subspace Alignments



Subspace alignment [Fernando et al.,ICCV’13]

Xt

j Target Domain

AD2

Source Domain

Target Aligned Source Domain

7

Extract a source subspace using the first d eigen vectors

— XsM

v

v

Extract a target subspace using the first d eigen vectors

v

Learn a linear function that aligns the source subspace with the
linear one

v

Totally unsupervised



Subspace alignment algorithm

Algorithm 1: Subspace alignment DA algorithm

Data: Source data S, Target data T, Source labels Ys, Subspace dimension d
Result: Predicted target labels Y7

S1 + PCA(S, d) (source subspace defined by the first d eigenvectors) ;

S, < PCA(T,d) (target subspace defined by the first d eigenvectors);

X, < S1S1'S, (operator for aligning the source subspace to the target
one);

S. = SX, (new source data in the aligned space);

Tr=TS; (new target data in the aligned space);

Yt « Classifier(S., T, Ys) ;

» M* =S;’S, corresponds to the “subspace alignment matrix”:
closed-form solution of M* = argminy, ||S1M — S;||

» X, =S5:51'S, = S{M" projects the source data to the target
subspace

» A natural similarity: Sim(xs,X:) = xsS1M*S1'x}, = x;Ax;



A simple approach

W Teeetoomain
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Target Aligned Source Domain

Pros

» Very simple and intuitive method
» Totally unsupervised
» Theoretical result on the dimensionality detection
Cons
» Assumes that all source and target instances are relevant
» Cannot be directly kernelizable by using k-PCA

» Can be improved by using landmarks-selection to project data in a non
linear space, and by using labels

= Many approaches try to look for latent space moving closer source and
target



Domain Adaptation with
Optimal Transport



Optimal Transport

Figure: Monge problem Figure: Kantorovich relaxation

(p,v) (P e P x Q)|VA, B C

inf / D(z,T(x))u(dx) P(A x Q)= p(A), P2 x B) = v(B)}
Q

THp=v

Oz
= P

RELEELLS,




Domain Adaptation with Optimal Transport
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Alignment with optimal transport [Courty et al., '14-'16]

» Find an alignment that minimizes the cost of transportation between

source and target

» Optimal transport (Wasserstein distance)

W(Ps, P:) = minv/
Q

c(Xs, Xe )Y (Xs, Xe ) dXs Xt

such that th Y(xs, xe)dxe = Ps and [, v(xs, x¢)dxs = Py, where ¢
is a distance/cost function (i.e. euclidean distance).



Optimal transport for DA [Courty et al, 2016]

Dataset Optimal transport Classification on transported samples
i & A
o +t Qt /
y o A /
o Q} ++i#
®8e T +++
e /
. /
‘T”{o( ) /
/
Q Y +0 Samples T, (x5) /
s 1 N

/ — Classifier on T, (x})

Classifier onx;

Assumptions
» There exist a transport T between the source and target domain.

» The transport preserves the conditional distributions (covariate
Shife): Pulylxs) = Pely[T(xs)).
3-step strategy
1. Estimate optimal transport between distributions: W(@s, ﬁr)
2. Transport the training samples onto the target distribution
X? = argmin, > 5)e(x,x}).
3. Learn a classifier on the transported training samples.



Improvements

» A bound similar to Ben-David et al.’s thm can be obtained
eT(h) < 65(/’1) + W(Ds, DT) + A
» We can use regularizers to force examples of the same class to be
grouped or to allow efficient optimization scheme

» The transport must be computed for each new sample, one solution
is to learn a mapping that estimate the transport [Perrot et al., 2016]

Linear mapping

Nonlinear mapping

2D Dataset

Barycentric displacement

T displacement

Out of sample T

% LM S
5 - &
e

e x
+ i?t;, 5
&

&

+ + Source samples
X X Target samples




Joint distribution optimal transport

» The model does not include the classifier — JDOT [Courty et al.,
2017] uses a transport taking into account labels:

W(Ps, P) = inf, 32, (b vl I F D (i)

mine, Y (ad(x?,x7) + €y7, F(5))) v(i,J) + M
i
» Theoretical justification under an hypothesis of probabilistic

lipschitzness: 2 close examples associated wrt to a joint distribution
M must have similar labels with high proba 1 — ¢()\):

1

A A 1
f) < W(Ps, P+ 0 A+ Mo(A
GT()— (57 t)+ (\/mis—i—\/mit)—’— + ¢()
OT coupling of JDOT Model estimated with JDOT

—— Source model
Target model
—— JDOT model

-4 -2 0 2 4 6 -4 -2 0 2 4 6



Deep Domain Adaptation



Deep Learning and DA

conv1 (XXX convs 106 | |fe7 fc8
,,,,,, L source data

classification
loss

shared
shared
shared

@,

(B0 | urg 0o

_| softiabel
loss

os:
B conv1 (XY convs ic6 | |fe7
QAN < labeled target data

Source softlabels I
From [Hoffman et al., 2017]

» Lots of work: achieve state of the art

» Many strategies to find good representations to transfer tasks



Deep Learning - adversarial strategy
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Idea of adversarial Learning [Ganin et al., 2015, 2016]
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E> a domain label d

forwardprop  backprop (and produced derivatives)

» Find a representation where source and target cannot be
discriminated

» while ensuring a good performance on source.




Deep Learning - adversarial strategy

More complex architecture [Long et al., ICML’15]
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Deep Learning - adversarial strategy

More complex architecture [Shen et al., AAAI'18]

Feature Extractor Discriminator
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Deep Learning - adversarial strategy

More complex architecture [Pei et al., AAAI'18]
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Hypothesis Transfer
Learning



Motivation

Drawback of classic domain adaptation

» Need to store source data to perform adaptation

» For each new domain, the adaptation process we must retrain with
all source data: prohibitive when the number of domains is large

» Need to take into account the distribution shift

Hypothesis Transfer Learning

» We keep only source hypotheses from the source domain
> No explicit access to source domain (data, distribution)

» We require some target labeled data



Motivation

htl

Biased regularized learning
> Given a source hypothesis hs (or weighted combination of source
hypotheses)
> Labeled target training set LT = {(x;, i)},
» Optimization problem:

: - 1
argming, ¢4 Z ;E(h(xi)d/i) + A|lh — hs]]
i=1



Some Guarantees

» Strongly convex regularizer || - ||
» Smooth, convex, Lispchitz loss function

» Guarantee (simplified) obtained with Algorithmic Stability
framework [Kuzborskij et al., 2013, 2017]:

er(h) < er(h)+ O (’W) +0 (;)

with H < m\

Implications

» If hs is a bad fit, bound is similar to standard bounds

» If e7(hs) is small enough, the bound is better - less examples
required- and can even tend to a fast rate O(1/m)



Representation Transfer from NN

Learn T’ Learn gg o f Transfer f from S,
from scratch on S learn g7 on T’

“Result” of McNamara and Balcan, ICML’17

A 2 a2 VCdim(H
er(8r-f) <w | €s (gs-f>+20 # my

w: measure of transferability
> Justify representation transfer
> Better guarantee than learning from scratch is VCdim(g) is small

Other perspective: Transferability through SGD ? [kuzborskij, arxiv
2017] [Hardt et al., 2016]



Conclusion



Conclusion

» Transfer Learning is a key problem for a wide applicability of
machine learning methods

» Many methods, good empirical results on some tasks

> The theoretical foundations are still insufficient to explain/justify
transferability

> Guarantees specific to the data/method?
» What to optimize/transfer

» Parameter tuning
» The control of negative transfer

» Other areas: lifelong learning, concept drift, knowledge distillation,
distributed models, reinforcement learning, . ..

Still a lot to do in an important topic!



