Transfer Learning/Domain Adaptation: Principles and Recent Advances

Amaury Habrard

Laboratoire Hubert Curien, UMR CNRS 5516, Université de Saint-Etienne amaury.habrard@univ-st-etienne.fr

LIMOS 15 novembre 2018

Goals in Al

- ► Ultimate goal: Build systems that can learn by exploring the world → Unfortunately not easy or almost impossible for now
- Intermediate goal: Build systems that can classify and recognize well

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution: Use Machine learning (ML) methods = near-human performance

Issues of Traditional ML

Issues:

- near-human performance is achieved using lots of labeled data
- Some tasks do not have that much labeled data (biology, physics etc) \rightarrow sample bias

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Some data/tasks evolve with time
- There exist too many tasks!

Issues of Traditional ML

Issues:

- near-human performance is achieved using lots of labeled data
- Some tasks do not have that much labeled data (biology, physics etc) \rightarrow sample bias
- Some data/tasks evolve with time
- There exist too many tasks!

Solution: Transfer learning

+ Use systems build for different but related applications

Transfer Learning

Definition [Pan, TL-IJCAI'13 tutorial]

Ability of a system to recognize and apply knowledge and skills learned in previous domains/tasks to novel domains/tasks

An example

- We have labeled images from a Web image corpus
- Is there a Person in unlabeled images from a Video corpus ?

?___

Person

no Person

Is there a Person?

Domain Adaptation problem - object detection

Our context

- Classification problem with data coming from different sources (domains).
- Distributions are different but related.

Domain adaptation problem - object detection

Problems

- Labels only available in the source domain, and classification is conducted in the target domain.
- Classifier trained on the source domain data performs badly in the target domain: training and test distributions are different!

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Domain adaptation problem - spam filtering

We aim at learning a spam filter from the mailing box of Bob and deploying the model over the emails received by Alice.

Domain adaptation problem - sentiment analysis

Electronics	Video games
(1) <u>Compact;</u> easy to operate; very good picture quality; looks <u>sharp</u> !	(2) A very <u>good</u> game! It is action packed and full of excitement. I am very much <u>hooked</u> on this game.
(3) I purchased this unit from Circuit City and I was very <u>excited</u> about the quality of the picture. It is really <u>nice</u> and <u>sharp</u> .	(4) Very <u>realistic</u> shooting action and good plots. We played this and were <u>hooked</u> .
(5) It is also quite <u>blurry</u> in very dark settings. I will <u>never_buy</u> HP again.	(6) It is so boring. I am extremely unhappy and will probably <u>never_buy</u> UbiSoft again.

- Source specific: *compact, sharp, blurry*.
- ► Target specific: *hooked*, *realistic*, *boring*.
- ► Domain independent: good, excited, nice, never_buy, unhappy.

Other examples of applications

 Speech recognition: Adapt to different accents

Speach recognition

Object Detection

Action recognition

Action recognition

Document categorization

medecine, physics, NLP, ...

Does it work?

Yes it helps! [Courty el al., 2017]

Domains	Base	SurK	SA	ARTL	OT-IT	OT-MM	Tloss
caltech→amazon	92.07	91.65	90.50	92.17	89.98	92.59	91.54
caltech→webcam	76.27	77.97	81.02	80.00	80.34	78.98	88.81
caltech→dslr	84.08	82.80	85.99	88.54	78.34	76.43	89.81
amazon→caltech	84.77	84.95	85.13	85.04	85.93	87.36	85.22
amazon→webcam	79.32	81.36	85.42	79.32	74.24	85.08	84.75
amazon→dslr	86.62	87.26	89.17	85.99	77.71	79.62	87.90
webcam->caltech	71.77	71.86	75.78	72.75	84.06	82.99	82.64
webcam→amazon	79.44	78.18	81.42	79.85	89.56	90.50	90.71
webcam→dslr	96.18	95.54	94.90	100.00	99.36	99.36	98.09
dslr→caltech	77.03	76.94	81.75	78.45	85.57	83.35	84.33
dslr→amazon	83.19	82.15	83.19	83.82	90.50	90.50	88.10
dslr→webcam	96.27	92.88	88.47	98.98	96.61	96.61	96.61
Mean	83.92	83.63	85.23	85.41	86.02	86.95	89.04
Mean rank	5.33	5.58	4.00	3.75	3.50	2.83	2.50
p-value	< 0.01	< 0.01	0.01	0.04	0.25	0.86	-

Outline

- Definition
- A first approach: co-variate shift
- When domain adaptation can work
- Some Domain Adaptation methods
 - Iterative approaches
 - Optimal Transport
 - Subspace Alignment
 - A quick work on Deep learning
- Hypothesis Transfer Learning

Acknowledgements: Basura Fernando, Nicolas Courty, Rémi Flamary, Pascal Germain, Emilie Morvant, Michaël Perrot, JP Peyrache, levgen Redko, Marc Sebban

Transfer Learning/Domain Adaptation

Definition (Pan and Yang 2010)

Given a source domain S and learning task Y_S , a target domain T and learning task Y_T , **transfer learning** aims to help improve the learning of the target predictive function f_T in D_T using the knowledge in S and T, where $S \neq T$ or $Y_S \neq Y_T$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Classic setting in domain adaptation

Statistical learning

- A feature space X, label set Y = {−1,1}.
 P_S distribution over X × Y, P_T distribution over X × Y
- An unknown labeling function $f : \mathcal{X} \to \mathcal{Y}$ that follows $P_T(y|\mathbf{x})$
- ► A source training set $LS = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\} \subset (\mathcal{X} \to \mathcal{Y})^m$ drawn i.i.d. from P_S .

A target unlabeled set $LT = {x_i}_{i=1}^{n_t}$ drawn i.i.d. from the marginal P_T over $\mathcal{X} \ D_T$

Learn a classifier (or a hypothesis) h ∈ H ⊆ Y^X as close as possible to the unknown function f.

► True source risk: $\epsilon_S(h) = \mathbb{E}_{(\mathbf{x}, y) \sim P_S}[h(\mathbf{x}) \neq y]$, Empirical source risk over LS: $\hat{\epsilon}_S(h) = \sum_{(\mathbf{x}, y) \in LS}[h(\mathbf{x}) \neq y]$. True target risk: $\epsilon_T(h) = \mathbb{E}_{(\mathbf{x}, y) \sim P_T}[h(\mathbf{x}) \neq y]$

Classic guarantee in supervised ML: $\epsilon_{\mathcal{S}}(h) \leq \hat{\epsilon}_{\mathcal{S}}(h) + \sqrt{\frac{\text{complexity}(h \in \mathcal{H})}{|LS|}}$ \Rightarrow but we want to be good on P_T

Main strategies in DA

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへぐ

Reweighting methods

A first analysis

$$\epsilon_{\mathcal{T}}(h) = \frac{\mathbf{E}}{(\mathbf{x}^{t}, y^{t}) \sim \mathcal{P}_{\mathcal{T}}} \mathbf{I} [h(\mathbf{x}^{t}) \neq y^{t}]$$

$$= \frac{\mathbf{E}}{(\mathbf{x}^{t}, y^{t}) \sim \mathcal{P}_{\mathcal{T}}} \frac{\mathcal{P}_{\mathcal{S}}(\mathbf{x}^{t}, y^{t})}{\mathcal{P}_{\mathcal{S}}(\mathbf{x}^{t}, y^{t})} \mathbf{I} [h(\mathbf{x}^{t}) \neq y^{t}]$$

$$= \sum_{(\mathbf{x}^{t}, y^{t})} \mathcal{P}_{\mathcal{T}}(\mathbf{x}^{t}, y^{t}) \frac{\mathcal{P}_{\mathcal{S}}(\mathbf{x}^{t}, y^{t})}{\mathcal{P}_{\mathcal{S}}(\mathbf{x}^{t}, y^{t})} \mathbf{I} [h(\mathbf{x}^{t}) \neq y^{t}]$$

$$= \frac{\mathbf{E}}{(\mathbf{x}^{t}, y^{t}) \sim \mathcal{P}_{\mathcal{S}}} \frac{\mathcal{P}_{\mathcal{T}}(\mathbf{x}^{t}, y^{t})}{\mathcal{P}_{\mathcal{S}}(\mathbf{x}^{t}, y^{t})} \mathbf{I} [h(\mathbf{x}^{t}) \neq y^{t}]$$

Assume similar tasks - covariate shift, $P_S(y|\mathbf{x}) = P_T(y|\mathbf{x})$, then:

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$= \underbrace{\mathbf{E}}_{(\mathbf{x}^{t}, y^{t}) \sim \mathbf{P}_{S}} \frac{D_{T}(\mathbf{x}^{t}) P_{T}(y^{t} | \mathbf{x}^{t})}{D_{S}(\mathbf{x}^{t}) P_{S}(y^{t} | \mathbf{x}^{t})} \mathbf{I}[h(\mathbf{x}^{t}) \neq y^{t}]$$
$$= \underbrace{\mathbf{E}}_{(\mathbf{x}^{t}, y^{t}) \sim \mathbf{P}_{S}} \frac{D_{T}(\mathbf{x}^{t})}{D_{S}(\mathbf{x}^{t})} \mathbf{I}[h(\mathbf{x}^{t}) \neq y^{t}]$$

Covariate shift [Shimodaira,'00]

 \Rightarrow With covariate shift, $P_{\mathcal{S}}(y|\mathbf{x}) = P_{\mathcal{T}}(y|\mathbf{x})$, we have:

$$= \mathop{\mathbf{E}}_{(\mathbf{x}^t)\sim D_{\mathbf{S}}} \frac{D_{\mathcal{T}}(\mathbf{x}^t)}{D_{\mathbf{S}}(\mathbf{x}^t)} \mathop{\mathbf{E}}_{y^t \sim \mathcal{P}_{\mathbf{S}}(y^t | \mathbf{x}^t)} \mathbf{I} \big[h(\mathbf{x}^t) \neq y^t \big]$$

 \Rightarrow weighted error on the source domain: $\omega(\mathbf{x}^t) = \frac{D_T(\mathbf{x}^t)}{D_S(\mathbf{x}^t)}$

Idea: reweight labeled source data according to an estimate of $\omega(\mathbf{x}^t)$: $\underset{(\mathbf{x}^t, y^t) \sim \mathcal{P}_S}{\mathsf{E}} \omega(\mathbf{x}^t) \mathbf{I} \big[h(\mathbf{x}^t) \neq y^t \big]$

Learn a classifier on a sample reweighted w.r.t. $\hat{\omega}$ $\sum_{(\mathbf{x}_i^s, y_i^s) \in S} \hat{\omega}(\mathbf{x}_i^s) / [h(\mathbf{x}_i^s) \neq y_i^s]$

Bad news

- ► DA is hard, even under covariate shift [Ben-David et al.,ALT'12] ⇒ To learn a classifier the number of examples depend on |*H*| (finite) or exponentially on the dimension of *X*
- ► Co-variate shift assumption may fail: Tasks are not similar in general P_S(y|x) ≠ P_T(y|x)

When domain adaptation can work?

Theoretical guarantees

Theoretical bounds [Ben-david et al., 2007,2010]

The error performed by a given classifier h in the target domain $\epsilon_T(h)$ is upper-bounded by the sum of three terms :

 $\epsilon_{T}(h) \leq \epsilon_{S}(h) + Div(\mu_{s}, \mu_{t}) + \lambda$

- ► Error of the classifier in the source domain ε_S(h) → can be optimized efficiently with supervised ML
- ► Divergence measure between the two domains Div(µ_s, µ_t) → key element to care about
- ► A third term measuring how much the classification tasks are related to each other.
 - \rightarrow Cross fingers and hope that it is small

 \Rightarrow A natural approach is then to move closer the two distributions while ensuring a low-error on the source domain

A Strong Assumption!

 $\lambda = \epsilon_{T}(h^{*}) + \epsilon_{S}(h^{*})$ with $h^{*} = \operatorname{argmin}_{h \in \mathcal{H}} \epsilon_{T}(h) + \epsilon_{S}(h)$ [Ben-David et al., 2007;2010]

 \Rightarrow There must exist a good hypothesis on the two domains (relatedness), or two good hypotheses -one on each domain- and close with respect to the target distribution [Mansour et al., 2009]

Divergences

H-divergence/Discrepancy

 \blacktriangleright Related to the hypothesis class ${\cal H}$

$$d_{\mathcal{H}\Delta\mathcal{H}}(D_{s}, D_{T}) = \sup_{(h, h') \in \mathcal{H}^{2}} \left| \epsilon_{T}(h, h') - \epsilon_{S}(h, h') \right|$$
$$= \sup_{(h, h') \in \mathcal{H}^{2}} \left| \sum_{\mathbf{x}^{t} \sim D_{T}} \left[h(\mathbf{x}^{t}) \neq h'(\mathbf{x}^{t}) \right] - \sum_{\mathbf{x}^{s} \sim D_{S}} \left[h(\mathbf{x}^{s}) \neq h'(\mathbf{x}^{s}) \right] \right|$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- $\blacktriangleright \Rightarrow$ Adaptation is better if domains cannot be distinguished with respect to ${\cal H}$
- Allows one to derive uniform convergence-like bounds (VC-dimension) or Rademacher bounds.

Divergences

Weighted average over ${\mathcal H}$

► averaged distance dis_{$$\rho$$}(D_s , D_T) = $\begin{bmatrix} \mathbf{E} \\ h, h' \sim \rho^2 [R_{D_T}(h, h') - R_{D_s}(h, h')] \end{bmatrix}$

L

I.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► Similar generalization bound

$$\underset{h\sim\rho}{\mathbf{E}} R_{P_{T}}(h) \leq \underset{h\sim\rho}{\mathbf{E}} R_{P_{S}}(h) + \operatorname{dis}_{\rho}(D_{S}, D_{T}) + \lambda_{\rho^{*}}$$
Controlled by PAC-Bayesian theory [Germain et al., 13;16]

Without the Hypothesis class

Maximum Mean Discrepancy [Huang et al.,06]

$$MMD(D_{S}, D_{T}) = |\mathop{\mathbb{E}}_{\mathbf{x}^{s} \sim D_{S}} \phi(\mathbf{x}^{s}) - \mathop{\mathbb{E}}_{\mathbf{x}^{t} \sim D_{T}} \phi(\mathbf{x}^{t})|$$

Rényi Divergence [Mansour et al., UAI'09]

$$D_{\alpha}(D_{\mathcal{S}}, D_{\mathcal{T}}) = \frac{1}{\alpha - 1} \log \sum_{\mathbf{x}} \frac{D_{\mathcal{S}}(\mathbf{x})^{\alpha}}{D_{\mathcal{T}}(\mathbf{x})^{\alpha - 1}}$$

Adjusting/Iterative methods

(日) (日) (日) (日) (日) (日) (日) (日)

Principle

- Integrate some information about the target samples iteratively ⇒ use of pseudo-labels
- "Move" closer distributions
 ⇒ Remove/add some instances ⇒ take into account a divergence
 measure
- Repeat the process until convergence or no remaining instances
- (e.g. DASVM [Bruzzone et al.,'10])

Convergence ?

Almost no theoretical guarantees

- Weak classifier assumption: each new classifier must do better than random guessing on the data it has been learned from on both domains
- At least one classifier must do better than no adaptation during iterations
- Control the balance between classes
- Use "soft" labels (limit negative transfer)
- Other idea: reverse validation.

Subspace Alignments

Subspace alignment [Fernando et al., ICCV'13]

- Extract a source subspace using the first d eigen vectors
- Extract a target subspace using the first d eigen vectors
- Learn a linear function that aligns the source subspace with the linear one

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Totally unsupervised

Subspace alignment algorithm

Algorithm 1: Subspace alignment DA algorithm						
Data: Source data S,	Target data T , Source labels Y_5 , Subspace dimension d					
Result: Predicted target labels Y_T						
$S_1 \leftarrow PCA(S, d)$	(source subspace defined by the first d eigenvectors) ;					
$S_2 \leftarrow PCA(T, d)$	(target subspace defined by the first d eigenvectors);					
$\mathbf{X}_{a} \leftarrow \mathbf{S}_{1}\mathbf{S}_{1}'\mathbf{S}_{2}$	(operator for aligning the source subspace to the target					
one);						
$S_a = \frac{SX_a}{2}$	(new source data in the aligned space);					
$\mathbf{T}_T = T\mathbf{S}_2$	(new target data in the aligned space);					
$Y_{T} \leftarrow Classifier(\mathbf{S}_{a}, \mathbf{T}_{T}, Y_{S})$;						

- ► $M^* = S_1'S_2$ corresponds to the "subspace alignment matrix": closed-form solution of $M^* = \operatorname{argmin}_M \|S_1M - S_2\|$
- ► X_a = S₁S₁'S₂ = S₁M^{*} projects the source data to the target subspace
- A natural similarity: $Sim(\mathbf{x}_s, \mathbf{x}_t) = \mathbf{x}_s \mathbf{S}_1 \mathbf{M}^* \mathbf{S}_1' \mathbf{x}_t' = \mathbf{x}_s \mathbf{A} \mathbf{x}_t'$

A simple approach

Pros

- Very simple and intuitive method
- Totally unsupervised
- Theoretical result on the dimensionality detection

Cons

- Assumes that all source and target instances are relevant
- Cannot be directly kernelizable by using k-PCA
- Can be improved by using landmarks-selection to project data in a non linear space, and by using labels

Domain Adaptation with Optimal Transport

Optimal Transport

Figure: Monge problem

Figure: Kantorovich relaxation

Domain Adaptation with Optimal Transport

Alignment with optimal transport [Courty et al., '14-'16]

- Find an alignment that minimizes the cost of transportation between source and target
- Optimal transport (Wasserstein distance)

$$W(P_s, P_t) = \min_{\gamma} \int_{\Omega_s \times \Omega_t} c(x_s, x_t) \gamma(x_s, x_t) dx_s dx_t$$

such that $\int_{\Omega_t} \gamma(\mathbf{x}_s, \mathbf{x}_t) d\mathbf{x}_t = P_s$ and $\int_{\Omega_s} \gamma(\mathbf{x}_s, \mathbf{x}_t) d\mathbf{x}_s = P_t$, where c is a distance/cost function (*i.e.* euclidean distance).

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへの

Optimal transport for DA [Courty et al, 2016]

Assumptions

- ► There exist a transport **T** between the source and target domain.
- The transport preserves the conditional distributions (covariate shift): $P_s(y|\mathbf{x}_s) = P_t(y|\mathbf{T}(\mathbf{x}_s)).$

3-step strategy

- 1. Estimate optimal transport between distributions: $W(\hat{D}_S, \hat{D}_T)$
- 2. Transport the training samples onto the target distribution $\widehat{\mathbf{x}}_{i}^{S} = \operatorname{argmin}_{\mathbf{x}} \sum_{j} \gamma(i, j) c(\mathbf{x}, \mathbf{x}_{j}^{t}).$
- 3. Learn a classifier on the transported training samples.

Improvements

- ► A bound similar to Ben-David et al.'s thm can be obtained $\epsilon_T(h) \le \epsilon_S(h) + W(D_S, D_T) + \lambda$
- We can use regularizers to force examples of the same class to be grouped or to allow efficient optimization scheme
- The transport must be computed for each new sample, one solution is to learn a mapping that estimate the transport [Perrot et al., 2016]

Joint distribution optimal transport

▶ The model does not include the classifier \rightarrow JDOT [Courty et al., 2017] uses a transport taking into account labels:

$$W(\hat{P}_s, \hat{P}_t^f) = \inf_{\gamma} \sum_{i,j} c([x_i^s; y_i^s], [x_j^t; f(x_j^t)]) \gamma(i,j)$$

$$\min_{f,\gamma} \sum_{i,j} \left(\alpha d(\mathbf{x}_i^s, \mathbf{x}_j^t) + \ell(\mathbf{y}_i^s, f(\mathbf{x}_j^t)) \right) \gamma(i, j) + \lambda \| f \|$$

 Theoretical justification under an hypothesis of probabilistic lipschitzness: 2 close examples associated wrt to a joint distribution Π must have similar labels with high proba 1 - φ(λ):

$$\epsilon_{T}(f) \leq W(\hat{P}_{s}, \hat{P}_{t}^{f}) + O(\frac{1}{\sqrt{m_{s}}} + \frac{1}{\sqrt{m_{t}}}) + \lambda + M\phi(\lambda)$$

Deep Domain Adaptation

Deep Learning and DA

From [Hoffman et al., 2017]

- Lots of work: achieve state of the art
- Many strategies to find good representations to transfer tasks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Idea of adversarial Learning [Ganin et al., 2015, 2016]

- Find a representation where source and target cannot be discriminated
- while ensuring a good performance on source.

More complex architecture [Long et al., ICML'15]

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

More complex architecture [Pei et al., AAAI'18]

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Hypothesis Transfer Learning

(日) (日) (日) (日) (日) (日) (日) (日)

Motivation

Drawback of classic domain adaptation

- Need to store source data to perform adaptation
- ► For each new domain, the adaptation process we must retrain with all source data: prohibitive when the number of domains is large

Need to take into account the distribution shift

Hypothesis Transfer Learning

- ▶ We keep only source hypotheses from the source domain
- No explicit access to source domain (data, distribution)
- We require some target labeled data

Motivation

Biased regularized learning

- Given a source hypothesis h_S (or weighted combination of source hypotheses)
- Labeled target training set $LT = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$
- Optimization problem:

$$\operatorname{argmin}_{h \in \mathcal{H}} \sum_{i=1}^{m} \frac{1}{m} \ell(h(\mathbf{x}_i), y_i) + \lambda \|h - h_{\mathcal{S}}\|$$

Some Guarantees

- Strongly convex regularizer $\|\cdot\|$
- Smooth, convex, Lispchitz loss function
- Guarantee (simplified) obtained with Algorithmic Stability framework [Kuzborskij et al., 2013, 2017]:

$$\epsilon_{T}(h) \leq \hat{\epsilon}_{LT}(h) + O\left(\frac{\sqrt{H \times \epsilon_{T}(h_{S})}}{m\lambda}\right) + O\left(\frac{1}{m}\right)$$

with $H \leq m\lambda$

Implications

- If h_S is a bad fit, bound is similar to standard bounds
- If e_T(h_S) is small enough, the bound is better less examples required- and can even tend to a fast rate O(1/m)

Representation Transfer from NN

"Result" of McNamara and Balcan, ICML'17

$$\epsilon_{T}(\hat{g}_{T}\cdot\hat{f}) \leq \omega \left(\epsilon_{S}\left(\hat{g}_{S}\cdot\hat{f} \right) + 2O\left(\sqrt{\frac{VCdim(\mathcal{H})}{m_{S}}} \right) \right) + O\left(\sqrt{\frac{VCdim(g)}{m_{T}}} \right)$$

- ω : measure of transferability
 - Justify representation transfer
 - ▶ Better guarantee than learning from scratch is VCdim(g) is small

Other perspective: Transferability through SGD ? [kuzborskij, arxiv 2017] [Hardt et al., 2016]

Conclusion

Conclusion

- Transfer Learning is a key problem for a wide applicability of machine learning methods
- Many methods, good empirical results on some tasks
- The theoretical foundations are still insufficient to explain/justify transferability
 - Guarantees specific to the data/method?
 - What to optimize/transfer
- Parameter tuning
- The control of negative transfer
- Other areas: lifelong learning, concept drift, knowledge distillation, distributed models, reinforcement learning, ...

Still a lot to do in an important topic!