
Transfer Learning/Domain Adaptation:
Principles and Recent Advances

Amaury Habrard

Laboratoire Hubert Curien, UMR CNRS 5516, Université de Saint-Etienne
amaury.habrard@univ-st-etienne.fr

LIMOS
15 novembre 2018



Goals in AI

I Ultimate goal: Build systems that can learn by exploring the world
→ Unfortunately not easy or almost impossible for now

I Intermediate goal: Build systems that can classify and recognize
well

I Solution: Use Machine learning (ML) methods = near-human
performance



Issues of Traditional ML

Issues:

- near-human performance is achieved using lots of labeled data

- Some tasks do not have that much labeled data (biology, physics
etc) → sample bias

- Some data/tasks evolve with time

- There exist too many tasks!

Solution: Transfer learning

+ Use systems build for different but related applications



Issues of Traditional ML

Issues:

- near-human performance is achieved using lots of labeled data

- Some tasks do not have that much labeled data (biology, physics
etc) → sample bias

- Some data/tasks evolve with time

- There exist too many tasks!

Solution: Transfer learning

+ Use systems build for different but related applications



Transfer Learning

Definition [Pan, TL-IJCAI’13 tutorial]

Ability of a system to recognize and apply knowledge and skills learned in
previous domains/tasks to novel domains/tasks

An example

• We have labeled images from a Web image corpus

• Is there a Person in unlabeled images from a Video corpus ?

Person no Person

?

Is there a Person?



Domain Adaptation problem - object detection

Amazon DLSR

Feature extraction Feature extraction

Probability Distribution Functions over the domains

Our context

I Classification problem with data coming from different sources
(domains).

I Distributions are different but related.



Domain adaptation problem - object detection

Amazon DLSR

Feature extraction Feature extraction

Source Domain Target Domain

+ Labels

not working !!!!

decision function

no labels !

Problems

I Labels only available in the source domain, and classification is
conducted in the target domain.

I Classifier trained on the source domain data performs badly in the
target domain: training and test distributions are different!



Domain adaptation problem - spam filtering

We aim at learning a spam filter from the mailing box of Bob and
deploying the model over the emails received by Alice.



Domain adaptation problem - sentiment analysis

Electronics Video games

(1) Compact; easy to operate; very
good picture quality; looks sharp!

(2) A very good game! It is action
packed and full of excitement. I am
very much hooked on this game.

(3) I purchased this unit from Circuit
City and I was very excited about the
quality of the picture. It is really nice
and sharp.

(4) Very realistic shooting action and
good plots. We played this and were
hooked.

(5) It is also quite blurry in very dark
settings. I will never buy HP again.

(6) It is so boring. I am extremely
unhappy and will probably never buy
UbiSoft again.

I Source specific: compact, sharp, blurry.

I Target specific: hooked, realistic, boring.

I Domain independent: good, excited, nice, never buy, unhappy.



Other examples of applications
I Speech recognition: Adapt

to different accents

2 Gabriela Csurka

Fig. 1.1: Example scenarios with domain adaptation needs.

the same distribution as the training data. When this assumption is not verified, i.e.
the distributions on training and test set do not match, the performance at test time
can be significantly degraded.

In visual applications, such distribution difference, called domain shift can
be a consequence of changing conditions, such as background, location, pose,
but the domain mismatch might be more severe when the source and target do-
mains contain images of different types, such as RGB photos, NIR, paintings,
sketches [271, 102, 63, 412]. Domain shifts are common in real-life applications.
Service provider companies are especially concerned since for the same service
(task), the distribution of the data may vary a lot from one customer to another.
In general, machine learning components of service solutions that are re-deployed
from a given customer or location to a new customer or location require specific
customization to accommodate the new conditions. Examples include brand senti-
ment management, where it is critical to tune the models to the way users talk about
their experience given the different products; or surveillance and urban traffic un-
derstanding, where models pretrained on previous locations might need adjustment
to the new environment. All these entail either acquisition of annotated data in the
new field or the calibration of the pretrained models to achieve the contractual per-
formance in the new situation. However, the former solution, i.e. data labeling, is ex-
pensive and time consuming due to the significant amount of human effort involved.
Therefore, the second option is preferred when possible. This can be achieved ei-
ther by adapting the pretrained models taking advantage of the unlabeled (and if
available small labeled) target set or, by exploiting both previously acquired labeled
source data and the new unlabeled target data together to build the target model.

Numerous approaches have been proposed in the last years to address adapta-
tion needs that arise in different application scenarios (see a few examples in Fig-
ure 1.1). Examples include DA and TL solutions for named entity recognition and

I Object Detection

2 Gabriela Csurka

Fig. 1.1: Example scenarios with domain adaptation needs.

the same distribution as the training data. When this assumption is not verified, i.e.
the distributions on training and test set do not match, the performance at test time
can be significantly degraded.

In visual applications, such distribution difference, called domain shift can
be a consequence of changing conditions, such as background, location, pose,
but the domain mismatch might be more severe when the source and target do-
mains contain images of different types, such as RGB photos, NIR, paintings,
sketches [271, 102, 63, 412]. Domain shifts are common in real-life applications.
Service provider companies are especially concerned since for the same service
(task), the distribution of the data may vary a lot from one customer to another.
In general, machine learning components of service solutions that are re-deployed
from a given customer or location to a new customer or location require specific
customization to accommodate the new conditions. Examples include brand senti-
ment management, where it is critical to tune the models to the way users talk about
their experience given the different products; or surveillance and urban traffic un-
derstanding, where models pretrained on previous locations might need adjustment
to the new environment. All these entail either acquisition of annotated data in the
new field or the calibration of the pretrained models to achieve the contractual per-
formance in the new situation. However, the former solution, i.e. data labeling, is ex-
pensive and time consuming due to the significant amount of human effort involved.
Therefore, the second option is preferred when possible. This can be achieved ei-
ther by adapting the pretrained models taking advantage of the unlabeled (and if
available small labeled) target set or, by exploiting both previously acquired labeled
source data and the new unlabeled target data together to build the target model.

Numerous approaches have been proposed in the last years to address adapta-
tion needs that arise in different application scenarios (see a few examples in Fig-
ure 1.1). Examples include DA and TL solutions for named entity recognition and

I Action recognition

2 Gabriela Csurka

Fig. 1.1: Example scenarios with domain adaptation needs.

the same distribution as the training data. When this assumption is not verified, i.e.
the distributions on training and test set do not match, the performance at test time
can be significantly degraded.

In visual applications, such distribution difference, called domain shift can
be a consequence of changing conditions, such as background, location, pose,
but the domain mismatch might be more severe when the source and target do-
mains contain images of different types, such as RGB photos, NIR, paintings,
sketches [271, 102, 63, 412]. Domain shifts are common in real-life applications.
Service provider companies are especially concerned since for the same service
(task), the distribution of the data may vary a lot from one customer to another.
In general, machine learning components of service solutions that are re-deployed
from a given customer or location to a new customer or location require specific
customization to accommodate the new conditions. Examples include brand senti-
ment management, where it is critical to tune the models to the way users talk about
their experience given the different products; or surveillance and urban traffic un-
derstanding, where models pretrained on previous locations might need adjustment
to the new environment. All these entail either acquisition of annotated data in the
new field or the calibration of the pretrained models to achieve the contractual per-
formance in the new situation. However, the former solution, i.e. data labeling, is ex-
pensive and time consuming due to the significant amount of human effort involved.
Therefore, the second option is preferred when possible. This can be achieved ei-
ther by adapting the pretrained models taking advantage of the unlabeled (and if
available small labeled) target set or, by exploiting both previously acquired labeled
source data and the new unlabeled target data together to build the target model.

Numerous approaches have been proposed in the last years to address adapta-
tion needs that arise in different application scenarios (see a few examples in Fig-
ure 1.1). Examples include DA and TL solutions for named entity recognition and

I Document categorization

2 Gabriela Csurka

Fig. 1.1: Example scenarios with domain adaptation needs.

the same distribution as the training data. When this assumption is not verified, i.e.
the distributions on training and test set do not match, the performance at test time
can be significantly degraded.

In visual applications, such distribution difference, called domain shift can
be a consequence of changing conditions, such as background, location, pose,
but the domain mismatch might be more severe when the source and target do-
mains contain images of different types, such as RGB photos, NIR, paintings,
sketches [271, 102, 63, 412]. Domain shifts are common in real-life applications.
Service provider companies are especially concerned since for the same service
(task), the distribution of the data may vary a lot from one customer to another.
In general, machine learning components of service solutions that are re-deployed
from a given customer or location to a new customer or location require specific
customization to accommodate the new conditions. Examples include brand senti-
ment management, where it is critical to tune the models to the way users talk about
their experience given the different products; or surveillance and urban traffic un-
derstanding, where models pretrained on previous locations might need adjustment
to the new environment. All these entail either acquisition of annotated data in the
new field or the calibration of the pretrained models to achieve the contractual per-
formance in the new situation. However, the former solution, i.e. data labeling, is ex-
pensive and time consuming due to the significant amount of human effort involved.
Therefore, the second option is preferred when possible. This can be achieved ei-
ther by adapting the pretrained models taking advantage of the unlabeled (and if
available small labeled) target set or, by exploiting both previously acquired labeled
source data and the new unlabeled target data together to build the target model.

Numerous approaches have been proposed in the last years to address adapta-
tion needs that arise in different application scenarios (see a few examples in Fig-
ure 1.1). Examples include DA and TL solutions for named entity recognition and

I medecine, physics, NLP, ...

Images from [Csurka et al., 2017]



Does it work?

Yes it helps! [Courty el al., 2017]Table 1: Accuracy on the Caltech-Office Dataset. Best value in bold.

Domains Base SurK SA ARTL OT-IT OT-MM Tloss

caltech!amazon 92.07 91.65 90.50 92.17 89.98 92.59 91.54
caltech!webcam 76.27 77.97 81.02 80.00 80.34 78.98 88.81

caltech!dslr 84.08 82.80 85.99 88.54 78.34 76.43 89.81
amazon!caltech 84.77 84.95 85.13 85.04 85.93 87.36 85.22

amazon!webcam 79.32 81.36 85.42 79.32 74.24 85.08 84.75
amazon!dslr 86.62 87.26 89.17 85.99 77.71 79.62 87.90

webcam!caltech 71.77 71.86 75.78 72.75 84.06 82.99 82.64
webcam!amazon 79.44 78.18 81.42 79.85 89.56 90.50 90.71

webcam!dslr 96.18 95.54 94.90 100.00 99.36 99.36 98.09
dslr!caltech 77.03 76.94 81.75 78.45 85.57 83.35 84.33
dslr!amazon 83.19 82.15 83.19 83.82 90.50 90.50 88.10
dslr!webcam 96.27 92.88 88.47 98.98 96.61 96.61 96.61

Mean 83.92 83.63 85.23 85.41 86.02 86.95 89.04
Mean rank 5.33 5.58 4.00 3.75 3.50 2.83 2.50

p-value < 0.01 < 0.01 0.01 0.04 0.25 0.86 �

Table 2: Accuracy on the Amazon review experiment. Maximum value in bold font.

Domains NN DANN JDOT (mse) JDOT (Hinge)

books!dvd 0.805 0.806 0.794 0.795
books!kitchen 0.768 0.767 0.791 0.794

books!electronics 0.746 0.747 0.778 0.781
dvd!books 0.725 0.747 0.761 0.763

dvd!kitchen 0.760 0.765 0.811 0.821
dvd!electronics 0.732 0.738 0.778 0.788
kitchen!books 0.704 0.718 0.732 0.728
kitchen!dvd 0.723 0.730 0.764 0.765

kitchen!electronics 0.847 0.846 0.844 0.845
electronics!books 0.713 0.718 0.740 0.749
electronics!dvd 0.726 0.726 0.738 0.737

electronics!kitchen 0.855 0.850 0.868 0.872

Mean 0.759 0.763 0.783 0.787

successful in every cases. It is performing best in 3 out of 12 adaptation tasks. However, its mean254

accuracy is the best as well as its average ranking. (nc: We conducted a Wilcoxon signed-rank test to255

test if JDOT was statistically better than the other methods, and report the p-value in the tables. This256

test shows that JDOT is statistically better than the considered methods, except for OT based ones).257

Amazon review classification dataset We now consider the Amazon review dataset [32] which258

contains online reviews of different products collected on the Amazon website. Reviews are encoded259

with bags-of-words unigram and bigram features as input. The problem is to predict positive (higher260

than 3 stars) or negative (3 stars or less) notation of reviews (binary classification). Since different261

words are employed to qualify the different categories of products, a domain adaptation task can be262

formulated if one wants to predict positive reviews of a product from labelled reviews of a different263

product. Following [33, 11], we consider only a subset of four different types of product: books,264

DVDs, electronics and kitchens. This yields 12 possible adaptation tasks. Each domain contains265

2000 labelled samples and approximately 4000 unlabelled ones. We therefore use these unlabelled266

samples to perform the transfer, and test on the 2000 labelled data.267

The goal of this experiment is to compare to the state-of-the-art method on this subset, namely268

Domain adversarial neural network ([11], denoted DANN), and show the versatility of our method269

that can adapt to any type of classifier. The neural network used for all methods in this experiment is270

a simple 2-layer model with sigmoid activation function in the hidden layer to promote non-linearity.271

50 neurons are used in this hidden layer. For DANN, hyper-parameters are set through the reverse272

cross-validation proposed in [11], and following the recommendation of authors the learning rate is273

set to 1e � 3. In the case of JDOT, we used the heuristic setting of ↵ = 1/ maxi,j d(xs
i ,x

t
j), and274

as such we do not need any cross-validation. The squared Euclidean norm is used for both metric275

in feature space and we test as loss functions both mean squared errors (mse) and Hinge losses . 10276

iterations of the block coordinate descent are realized. For each method, we stop the learning process277

of the network after 5 epochs. Classification accuracies are presented in table 2. The neural network278

(NN), trained on source and tested on target, is also presented as a baseline. JDOT surpasses DANN279

in 11 out of 12 tasks (except on books!dvd). The Hinge loss is better in than mse in 10 out of 12280

cases, which is expected given the superiority of the Hinge loss on classification tasks [19].281

7



Outline

I Definition

I A first approach: co-variate shift

I When domain adaptation can work

I Some Domain Adaptation methods
I Iterative approaches
I Optimal Transport
I Subspace Alignment
I A quick work on Deep learning

I Hypothesis Transfer Learning

Acknowledgements: Basura Fernando, Nicolas Courty, Rémi Flamary, Pascal

Germain, Emilie Morvant, Michaël Perrot, JP Peyrache, Ievgen Redko, Marc Sebban



Transfer Learning/Domain
Adaptation



Definition (Pan and Yang 2010)

Given a source domain S and learning task YS , a target domain T and
learning taskYT , transfer learning aims to help improve the learning of
the target predictive function fT in DT using the knowledge in S and T ,
where S 6= T or YS 6= YT .

data

Transfer Learning

Inductive

Transfer Learning

No labeled data

Labeled source

data are available

Multi−task Learning

Domain−Adaptation

Labeled source

data are available

Different domains

Single domain

Unsupervised

Sample Bias/Covariate Shift

Transfer Learning

TransductiveTransfer Learning

Labeled target

data are available

Self−taught Learning

Hypothesis

Transfer

Multi−source Adaptation

Hypothesis Transfer Learning

source data

No source data

source hypothesis available

No labeled

data available

Labeled target

No target labelled

A taxonomy, adapted from: Pan and Yang, TKDE 2010



Classic setting in domain adaptation

Statistical learning

I A feature space X , label set Y = {−1, 1}.
PS distribution over X × Y, PT distribution over X × Y

I An unknown labeling function f : X → Y that follows PT (y |x)

I A source training set LS = {(x1, y1), . . . , (xm, ym)} ⊂ (X → Y)m

drawn i.i.d. from PS .

A target unlabeled set LT = {xi}nti=1 drawn i.i.d. from the marginal
PT over X DT

I Learn a classifier (or a hypothesis) h ∈ H ⊆ YX as close as possible
to the unknown function f .

I True source risk: εS(h) = E(x,y)∼PS
[h(x) 6= y ],

Empirical source risk over LS: ε̂S(h) =
∑

(x,y)∈LS [h(x) 6= y ].

True target risk: εT (h) = E(x,y)∼PT
[h(x) 6= y ]

Classic guarantee in supervised ML: εS(h) ≤ ε̂S(h) +

√
complexity(h∈H)

|LS|
⇒ but we want to be good on PT



Main strategies in DA

EM−based methods/Boosting

− Sample bias
− Covariate shift

Instance/Hypothesis weighting

Statistical     Learning Theory

Representation Learning
− Domain invariant features

− Latent features

 

Iterative Models



Reweighting methods



A first analysis

εT (h) = E
(xt ,y t)∼PT

I
[
h(xt) 6= y t

]

= E
(xt ,y t)∼PT

PS(xt , y t)

PS(xt , y t)
I
[
h(xt) 6= y t

]

=
∑

(xt ,y t)

PT (xt , y t)
PS(xt , y t)

PS(xt , y t)
I
[
h(xt) 6= y t

]

= E
(xt ,y t)∼PS

PT (xt , y t)

PS(xt , y t)
I
[
h(xt) 6= y t

]

Assume similar tasks - covariate shift,PS(y |x) = PT (y |x), then:

= E
(xt ,y t)∼PS

DT (xt)PT (y t |xt)
DS(xt)PS(y t |xt) I

[
h(xt) 6= y t

]

= E
(xt ,y t)∼PS

DT (xt)

DS(xt)
I
[
h(xt) 6= y t

]



Covariate shift [Shimodaira,’00]

⇒ With covariate shift, PS(y |x) = PT (y |x), we have:

= E
(xt)∼DS

DT (xt)

DS(xt)
E

y t∼PS (y t |xt)
I
[
h(xt) 6= y t

]

⇒ weighted error on the source domain: ω(xt) = DT (xt)
DS (xt)

Idea: reweight labeled source data according to an estimate of ω(xt):
E

(xt ,y t)∼PS

ω(xt)I
[
h(xt) 6= y t

]

Learn a classifier on a sample reweighted w.r.t. ω̂∑

(xsi ,y
s
i )∈S

ω̂(xsi )I [h(xsi ) 6= y s
i ]

Much recent research

Correcting sampling bias

[Shimodaira, ’00]

[Huang et al., Bickel et al., ’07]
[Sugiyama et al., ’08]

[Sethy et al., ’06]

[Sethy et al., ’09]
[This work]

Adjusting mismatched models

[Evgeniou and Pontil, ’05]

[Duan et al., ’09]
[Duan et al., Daumé III et al., Saenko et al., ’10]

[Kulis et al., Chen et al., ’11]

+
-

-
--++

+

-
-
--++

Inferring 
domain-
invariant 
features

[Pan et al., ’09]

[Blitzer et al., ’06] [Gopalan et al., ’11]
[Chen et al., ’12][Daumé III, ’07]

[Argyriou et al, ’08] [Gong et al., ’12]
[Muandet et al., ’13]

++
+-

- +-+- +



Bad news

I DA is hard, even under covariate shift [Ben-David et al.,ALT’12]
⇒ To learn a classifier the number of examples depend on |H|
(finite) or exponentially on the dimension of X

I Co-variate shift assumption may fail:
Tasks are not similar in general PS(y |x) 6= PT (y |x)



When domain adaptation
can work?



Theoretical guarantees

Theoretical bounds [Ben-david et al., 2007,2010]

The error performed by a given classifier h in the target domain εT (h) is
upper-bounded by the sum of three terms :

εT (h) ≤ εS(h) + Div(µs , µt) + λ

I Error of the classifier in the source domain εS(h)
→ can be optimized efficiently with supervised ML

I Divergence measure between the two domains Div(µs , µt)
→ key element to care about

I A third term measuring how much the classification tasks are related
to each other.
→ Cross fingers and hope that it is small

⇒ A natural approach is then to move closer the two distributions
while ensuring a low-error on the source domain



A Strong Assumption!

When can it work? - small λ

Data Intelligence - Lab H. Curien - U. Saint-Etienne
Machine Learning

• Learning theory, w.h.p.

R(h)  R̂(h) + O

✓q
complexity

n

◆

• Domain Adaptation/Transfer Learning

• Unbalanced data, online, temporal data,
multi-class, multi-view, new methods,
Languages, Text, Deep/Metric Learning

Social Information Retrieval

Representation Learning

METHODS and TOOLS

(representation learning)

Deep Learning:

- neural networks

- hierarchical models

bag of

graphlets, ...

graph and pattern mining

supervised metric learning
selected/combined

features

local models

or metrics

semantic

utterances

grammar inference

Regression

Classi cation

(binary .. 1k classes)

Clustering

Abnormality Detection

Indexing and Retrieval

TASKS

SIFT/STIP

descriptors
MFCC

descriptors
spectrograms

structured

graphs/grids
bag of words

multivariate

time series
RGB Colors

images

videos

audio text

DATA

Data Mining - Graphs
Pattern extraction, sub-
graph mining, temporal
patterns, constraints

Deep Learning and AI Symposium, Tokyo, Japan, 2016 2/3

I λ = εT (h∗) + εS(h∗)
with h∗ = argminh∈HεT (h) + εS(h) [Ben-David et al., 2007;2010]

⇒ There must exist a good hypothesis on the two domains (relatedness),
or two good hypotheses -one on each domain- and close with respect to
the target distribution [Mansour et al., 2009]



Divergences

H-divergence/Discrepancy

I Related to the hypothesis class H

dH∆H(Ds ,DT ) = sup
(h,h′)∈H2

∣∣∣εT (h, h′)− εS(h, h′)
∣∣∣

= sup
(h,h′)∈H2

∣∣∣ E
xt∼DT

[
h(xt) 6= h′(xt)

]
− E

xs∼DS

[
h(xs) 6= h′(xs)

]∣∣∣

I ⇒ Adaptation is better if domains cannot be distinguished with
respect to H

I Allows one to derive uniform convergence-like bounds
(VC-dimension) or Rademacher bounds.



Divergences

Weighted average over H

I averaged distance disρ(DS ,DT ) =

∣∣∣∣ E
h,h′∼ρ2

[RDT
(h, h′)− RDS

(h, h′)]

∣∣∣∣
I Similar generalization bound

E
h∼ρ

RPT
(h) ≤ E

h∼ρ
RPS

(h) + disρ(DS ,DT ) + λρ∗

Controlled by PAC-Bayesian theory [Germain et al., 13;16]

Without the Hypothesis class

I Maximum Mean Discrepancy [Huang et al.,06]

MMD(DS ,DT ) = | E
xs∼DS

φ(xs)− E
xt∼DT

φ(xt)|

I Rényi Divergence [Mansour et al., UAI’09]

Dα(DS ,DT ) =
1

α− 1
log
∑

x

DS(x)α

DT (x)α−1



Adjusting/Iterative
methods



Principle

I Integrate some information about the target samples iteratively
⇒ use of pseudo-labels

I “Move” closer distributions
⇒ Remove/add some instances ⇒ take into account a divergence
measure

I Repeat the process until convergence or no remaining instances

(e.g. DASVM [Bruzzone et al.,’10])

+ ++
+

+

+
+ ++

+

+

+

+ ++
+

+

+

+
+

+
+
+

+ +

+++

++hfinal



Convergence ?

Almost no theoretical guarantees

I Weak classifier assumption: each new classifier must do better than
random guessing on the data it has been learned from on both
domains

I At least one classifier must do better than no adaptation during
iterations

I Control the balance between classes

I Use “soft” labels (limit negative transfer)

I Other idea: reverse validation.

+++++

hl

hl
r

1 Learning of 

2 Auto Labeling 

3 Learning of

h  from LS U TS

of TS with h

l

l

h  from TS auto labeledl
r

4 Evaluation
of h  on LS

by cross-validation
l
r

+ +
+
++
-- ---

LS TS TS

TS

-- -
--

LS
+ +
+
++
-- ---



Subspace Alignments



Subspace alignment [Fernando et al.,ICCV’13]

I Extract a source subspace using the first d eigen vectors

I Extract a target subspace using the first d eigen vectors

I Learn a linear function that aligns the source subspace with the
linear one

I Totally unsupervised



Subspace alignment algorithm

Algorithm 1: Subspace alignment DA algorithm

Data: Source data S , Target data T , Source labels YS , Subspace dimension d
Result: Predicted target labels YT

S1 ← PCA(S , d) (source subspace defined by the first d eigenvectors) ;
S2 ← PCA(T , d) (target subspace defined by the first d eigenvectors);
Xa ← S1S1

′S2 (operator for aligning the source subspace to the target
one);

Sa = SXa (new source data in the aligned space);
TT = T S2 (new target data in the aligned space);
YT ← Classifier(Sa,TT ,YS) ;

I M∗ = S1
′S2 corresponds to the “subspace alignment matrix”:

closed-form solution of M∗ = argminM ‖S1M− S2‖
I Xa = S1S1

′S2 = S1M∗ projects the source data to the target
subspace

I A natural similarity: Sim(xs , xt) = xsS1M∗S1
′x′t = xsAx′t



A simple approach 1 A Comprehensive Survey on Domain Adaptation for Visual Applications 9

Fig. 1.6: Feature transformation based
approaches aim in finding a projection
y1 = y2 in general to a lower dimen-
sional space, where the overlap between
the two domains is increased. When
y1 6= y2, we talk about asymmetric
feature transformation. (Courtesy to D.
Xu.)

Instead of restricting the discrepancy to a simple distance between the sample
means in the lower-dimensional space, Baktashmotlagh et al. [25] propose the Do-
main Invariant Projection (DIP) approach that compares directly the distributions in
the RKHS while constraining the transformation to be orthogonal. They go a step
further in [26] and based on the fact that probability distributions lie on a Rieman-
nian manifold, propose the Statistically Invariant Embedding (SIE) that uses the
Hellinger distance on this manifold to compare kernel density estimates between of
the source and target data5. Both the DIP and SIE, involve non-linear optimizations
and are solved with the conjugate gradient algorithm [143].

The Transfer Sparse Coding [310] learns robust sparse representations for clas-
sifying cross-domain data accurately. To bring the domains closer, the distances be-
tween the sample means for each dimensions of the source and the target is incorpo-
rated into the objective function to be minimized. The Transfer Joint Matching [313]
aims at learning a new space in which the distance between the empirical expecta-
tions of source and target data is minimized using a kernel mapping that yields a
non-linear transformation between the two domains. To put less emphasis on the
source instances that are irrelevant to classify the target data, they additionally use
instance re-weighing.

The feature transformation proposed by Chen et al. in [77] exploits the cor-
relation between the source and target set to learn a robust feature representation
by reconstructing the original features from their noised counterparts. The method
called Marginalized Denoising Autoencoder (MDA) is based on a quadratic loss
and a noise that factorizes over all feature dimensions6. This allows the method to
avoid explicit data corruption by marginalizing out the noise and to have a closed-
form solution for the feature transformation Note that it is straightforward to stack
together several layers with optional non-linearities between layers to obtain a deep
network with the parameters for each layer obtained in a single forward pass (see
also Section 1.4).

In general, the above mentioned methods learn the transformations without using
any class label. After projecting the data in the new space, any classifier can be used
to learn a model that aims to perform well on both the source and target data. The

5 Chapter 5 describes several invariant embedding approaches considering both the RKHS and the
Riemannian manifold.
6 More details about MDA can be found in Chapter 7.

Pros

I Very simple and intuitive method

I Totally unsupervised

I Theoretical result on the dimensionality detection

Cons

I Assumes that all source and target instances are relevant

I Cannot be directly kernelizable by using k-PCA

I Can be improved by using landmarks-selection to project data in a non
linear space, and by using labels

⇒ Many approaches try to look for latent space moving closer source and

target



Domain Adaptation with
Optimal Transport



Optimal Transport

Figure: Monge problem Figure: Kantorovich relaxation



Domain Adaptation with Optimal Transport

0 5 10 15

0

5

10

15

Optimal matrix γ

Alignment with optimal transport [Courty et al., ’14-’16]

I Find an alignment that minimizes the cost of transportation between
source and target

I Optimal transport (Wasserstein distance)

W (Ps ,Pt) = minγ

∫

Ωs×Ωt

c(xs , xt)γ(xs , xt)dxsdxt

such that
∫

Ωt
γ(xs , xt)dxt = Ps and

∫
Ωs
γ(xs , xt)dxs = Pt , where c

is a distance/cost function (i.e. euclidean distance).



Optimal transport for DA [Courty et al, 2016]Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Assumptions

I There exist a transport T between the source and target domain.

I The transport preserves the conditional distributions (covariate
shift):

Ps(y |xs) = Pt(y |T(xs)).

3-step strategy

1. Estimate optimal transport between distributions: W (D̂S , D̂T )

2. Transport the training samples onto the target distribution
x̂Si = argminx

∑
j γ(i , j)c(x, xtj ).

3. Learn a classifier on the transported training samples.



Improvements

I A bound similar to Ben-David et al.’s thm can be obtained
εT (h) ≤ εS(h) + W (DS ,DT ) + λ

I We can use regularizers to force examples of the same class to be
grouped or to allow efficient optimization scheme

I The transport must be computed for each new sample, one solution
is to learn a mapping that estimate the transport [Perrot et al., 2016]

Lin
ea

r m
ap

pi
ng

2D Dataset

No
nl

in
ea

r m
ap

pi
ng

Source samples
Target samples

Barycentric displacement T displacement Out of sample T



Joint distribution optimal transport
I The model does not include the classifier → JDOT [Courty et al.,

2017] uses a transport taking into account labels:

W (P̂s , P̂
f
t ) = infγ

∑
i,j c([x si ; y s

i ], [x tj ; f (x tj )])γ(i , j)

minf ,γ
∑

i,j

(
αd(x si , x

t
j ) + `(y s

i , f (x tj ))
)
γ(i , j) + λ‖f ‖

I Theoretical justification under an hypothesis of probabilistic
lipschitzness: 2 close examples associated wrt to a joint distribution
Π must have similar labels with high proba 1− φ(λ):

εT (f ) ≤W (P̂s , P̂
f
t ) + O(

1√
ms

+
1√
mt

) + λ+ Mφ(λ)



Deep Domain Adaptation



Deep Learning and DA

162 Judy Hoffman⇤ and Eric Tzeng⇤ and Trevor Darrell and Kate Saenko

Source Data

backpack chair bike

Target Databackpack

?

fc8conv1 conv5 fc6 fc7

Source softlabels

all
 ta

rg
et

 d
at

a

source data

labeled target data

fc8conv1 conv5
source data

softmax 
high temp

softlabel 
loss

fcD

fc6 fc7

classification 
loss

domain 
confusion 

loss

domain 
classifier 

loss
sh

ar
ed

sh
ar

ed

sh
ar

ed

sh
ar

ed

sh
ar

ed

Fig. 9.2: Our overall CNN architecture for domain and task transfer. We use a DC loss over all
source and target (both labeled and unlabeled) data to learn a domain invariant representation. We
simultaneously transfer the learned source semantic structure to the target domain by optimizing
the network to produce activation distributions that match those learned for source data in the
source only CNN. Best viewed in color.

In particular, using deep representations dramatically reduces the effect of resolu-
tion and lighting on domain shifts [128, 239]. Parallel CNN architectures such as
Siamese networks have been shown to be effective for learning invariant represen-
tations [52, 89]. However, training these networks requires labels for each training
instance, so it is unclear how to extend these methods to unsupervised or semi-
supervised settings.

Training a joint source and target CNN architecture was proposed by [88], but
was limited to two layers and so was significantly outperformed by the methods
with a deeper architecture [275], (pre-trained on ImageNet [404]). [189] proposed
pre-training with a denoising auto-encoder, then training a two-layer network simul-
taneously with the MMD domain confusion loss. This effectively learns a domain
invariant representation, but again, because the learned network is relatively shallow,
it lacks the strong semantic representation that is learned by directly optimizing a
classification objective with a supervised deep CNN.

Other works have contemporaneously explored the idea of directly optimizing a
representation for domain invariance [182, 309]. However, they either use weaker
measures of domain invariance or make use of optimization methods that are less
robust than our proposed method, and they do not attempt to solve the task transfer
problem in the semi-supervised setting.

9.2 Joint CNN architecture for domain and task transfer

We first give an overview of our convolutional network (CNN) architecture, depicted
in Figure 9.2, that learns a representation which both aligns visual domains and
transfers the semantic structure from a well labeled source domain to the sparsely

From [Hoffman et al., 2017]

I Lots of work: achieve state of the art

I Many strategies to find good representations to transfer tasks



Deep Learning - adversarial strategy
Unsupervised Domain Adaptation by Backpropagation

Figure 1. The proposed architecture includes a deep feature extractor (green) and a deep label predictor (blue), which together form
a standard feed-forward architecture. Unsupervised domain adaptation is achieved by adding a domain classifier (red) connected to the
feature extractor via a gradient reversal layer that multiplies the gradient by a certain negative constant during the backpropagation-
based training. Otherwise, the training proceeds in a standard way and minimizes the label prediction loss (for source examples) and
the domain classification loss (for all samples). Gradient reversal ensures that the feature distributions over the two domains are made
similar (as indistinguishable as possible for the domain classifier), thus resulting in the domain-invariant features.

forward models can handle. We further assume that there
exist two distributions S(x, y) and T (x, y) on X ⌦ Y ,
which will be referred to as the source distribution and
the target distribution (or the source domain and the tar-
get domain). Both distributions are assumed complex and
unknown, and furthermore similar but different (in other
words, S is “shifted” from T by some domain shift).
Our ultimate goal is to be able to predict labels y given
the input x for the target distribution. At training time,
we have an access to a large set of training samples
{x1,x2, . . . ,xN} from both the source and the target do-
mains distributed according to the marginal distributions
S(x) and T (x). We denote with di the binary variable (do-
main label) for the i-th example, which indicates whether
xi come from the source distribution (xi⇠S(x) if di=0) or
from the target distribution (xi⇠T (x) if di=1). For the ex-
amples from the source distribution (di=0) the correspond-
ing labels yi 2 Y are known at training time. For the ex-
amples from the target domains, we do not know the labels
at training time, and we want to predict such labels at test
time.
We now define a deep feed-forward architecture that for
each input x predicts its label y 2 Y and its domain label
d 2 {0, 1}. We decompose such mapping into three parts.
We assume that the input x is first mapped by a mapping
Gf (a feature extractor) to a D-dimensional feature vector
f 2 RD. The feature mapping may also include several
feed-forward layers and we denote the vector of parame-
ters of all layers in this mapping as ✓f , i.e. f = Gf (x; ✓f ).
Then, the feature vector f is mapped by a mapping Gy (la-
bel predictor) to the label y, and we denote the parameters
of this mapping with ✓y . Finally, the same feature vector f
is mapped to the domain label d by a mapping Gd (domain

classifier) with the parameters ✓d (Figure 1).
During the learning stage, we aim to minimize the label
prediction loss on the annotated part (i.e. the source part)
of the training set, and the parameters of both the feature
extractor and the label predictor are thus optimized in or-
der to minimize the empirical loss for the source domain
samples. This ensures the discriminativeness of the fea-
tures f and the overall good prediction performance of the
combination of the feature extractor and the label predictor
on the source domain.
At the same time, we want to make the features f
domain-invariant. That is, we want to make the dis-
tributions S(f) = {Gf (x; ✓f ) |x⇠S(x)} and T (f) =
{Gf (x; ✓f ) |x⇠T (x)} to be similar. Under the covariate
shift assumption, this would make the label prediction ac-
curacy on the target domain to be the same as on the source
domain (Shimodaira, 2000). Measuring the dissimilarity
of the distributions S(f) and T (f) is however non-trivial,
given that f is high-dimensional, and that the distributions
themselves are constantly changing as learning progresses.
One way to estimate the dissimilarity is to look at the loss
of the domain classifier Gd, provided that the parameters
✓d of the domain classifier have been trained to discrim-
inate between the two feature distributions in an optimal
way.
This observation leads to our idea. At training time, in or-
der to obtain domain-invariant features, we seek the param-
eters ✓f of the feature mapping that maximize the loss of
the domain classifier (by making the two feature distribu-
tions as similar as possible), while simultaneously seeking
the parameters ✓d of the domain classifier that minimize the
loss of the domain classifier. In addition, we seek to mini-
mize the loss of the label predictor.

Idea of adversarial Learning [Ganin et al., 2015, 2016]

I Find a representation where source and target cannot be
discriminated

I while ensuring a good performance on source.



Deep Learning - adversarial strategy

More complex architecture [Long et al., ICML’15]
Learning Transferable Features with Deep Adaptation Networks

3. Deep Adaptation Networks
In unsupervised domain adaptation, we are given a source
domainDs = {(xs

i , y
s
i )}ns

i=1 with ns labeled examples, and
a target domain Dt = {xt

j}nt

j=1 with nt unlabeled exam-
ples. The source domain and target domain are charac-
terized by probability distributions p and q, respectively.
We aim to construct a deep neural network which is able
to learn transferable features that bridge the cross-domain
discrepancy, and build a classifier y = θ(x) which can
minimize target risk ϵt (θ) = Pr(x,y)∼q [θ (x) ̸= y] using
source supervision. In semi-supervised adaptation where
the target has a small number of labeled examples, we de-
note by Da = {(xa

i , ya
i )} the na annotated examples of

source and target domains.

3.1. Model

MK-MMD Domain adaptation is challenging in that the
target domain has no (or only limited) labeled information.
To approach this problem, many existing methods aim to
bound the target error by the source error plus a discrepancy
metric between the source and the target (Ben-David et al.,
2010). Two classes of statistics have been explored for
the two-sample testing, where acceptance or rejection deci-
sions are made for a null hypothesis p = q, given samples
generated respectively from p and q: energy distances and
maximum mean discrepancies (MMD) (Sejdinovic et al.,
2013). In this paper, we focus on the multiple kernel variant
of MMD (MK-MMD) proposed by Gretton et al. (2012b),
which is formalized to jointly maximize the two-sample
test power and minimize the Type II error, i.e., the failure
of rejecting a false null hypothesis.

Denote by Hk be the reproducing kernel Hilbert space
(RKHS) endowed with a characteristic kernel k. The mean
embedding of distribution p in Hk is a unique element
µk(p) such that Ex∼pf (x) = ⟨f (x) , µk (p)⟩Hk

for all
f ∈ Hk. The MK-MMD dk (p, q) between probability dis-
tributions p and q is defined as the RKHS distance between
the mean embeddings of p and q. The squared formulation
of MK-MMD is defined as

d2
k (p, q) !

∥∥Ep [φ (xs)] − Eq

[
φ

(
xt

)]∥∥2

Hk
. (1)

The most important property is that p = q iff d2
k (p, q) = 0

(Gretton et al., 2012a). The characteristic kernel associated
with the feature map φ, k (xs,xt) = ⟨φ (xs) , φ (xt)⟩, is
defined as the convex combination ofm PSD kernels {ku},

K !
{

k =

m∑

u=1

βuku :

m∑

u=1

βu = 1, βu " 0, ∀u

}
, (2)

where the constraints on coefficients {βu} are imposed to
guarantee that the derived multi-kernel k is characteristic.
As studied theoretically in Gretton et al. (2012b), the kernel

MK-
MMD

MK-
MMD

MK-
MMD

input conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

source
output

target
output

frozen frozenfrozen fine-
tune

fine-
tune

learn learnlearn learn

Figure 1. The DAN architecture for learning transferable features.
Since deep features eventually transition from general to specific
along the network, (1) the features extracted by convolutional lay-
ers conv1–conv3 are general, hence these layers are frozen, (2)
the features extracted by layers conv4–conv5 are slightly less
transferable, hence these layers are learned via fine-tuning, and
(3) fully connected layers fc6–fc8 are tailored to fit specific
tasks, hence they are not transferable and should be adapted with
MK-MMD.

adopted for the mean embeddings of p and q is critical to
ensure the test power and low test error. The multi-kernel
k can leverage different kernels to enhance MK-MMD test,
leading to a principled method for optimal kernel selection.

One of the feasible strategies for controlling the domain
discrepancy is to find an abstract feature representation
through which the source and target domains are simi-
lar (Ben-David et al., 2010). Although this idea has been
explored in several papers (Pan et al., 2011; Zhang et al.,
2013; Wang & Schneider, 2014), to date there has been no
attempt to enhance the transferability of feature representa-
tion via MK-MMD in deep neural networks.

Deep Adaptation Networks (DAN) In this paper, we ex-
plore the idea of MK-MMD-based adaptation for learning
transferable features in deep networks. We start with deep
convolutional neural networks (CNN) (Krizhevsky et al.,
2012), a strong model when it is adapted to novel tasks
(Donahue et al., 2014; Hoffman et al., 2014). The main
challenge is that the target domain has no or just limited
labeled information, hence directly adapting CNN to the
target domain via fine-tuning is impossible or is prone to
over-fitting. With the idea of domain adaptation, we are
targeting a deep adaptation network (DAN) that can exploit
both source-labeled data and target-unlabeled data. Fig-
ure 1 gives an illustration of the proposed DAN model.

We extend the AlexNet architecture (Krizhevsky et al.,
2012), which is comprised of five convolutional layers
(conv1–conv5) and three fully connected layers (fc6–
fc8). Each fc layer ℓ learns a nonlinear mapping hℓ

i =
f ℓ

(
Wℓhℓ−1

i + bℓ
)
, where hℓ

i is the ℓth layer hidden rep-
resentation of point xi,Wℓ and bℓ are the weights and bias
of the ℓth layer, and f ℓ is the activation, taking as recti-
fier units f ℓ(x) = max(0,x) for hidden layers or softmax
units f ℓ (x) = ex/

∑|x|
j=1 exj for the output layer. Letting



Deep Learning - adversarial strategy

More complex architecture [Shen et al., AAAI’18]

Figure 1: WDGRL Combining with Discriminator.

representations with lower Wasserstein distance, the adver-
sarial objective can finally learn domain invariant feature
representations.

Combining with Discriminator
As mentioned above, our final goal is to learn a high-
performance classifier for the target domain. However, the
process of WDGRL is in an unsupervised setting, which
may result in that the learned domain invariant representa-
tions are not discriminative enough. Hence it is necessary
to incorporate the supervision signals of source domain data
into the representation learning process as in DANN (Ganin
et al. 2016). Next we further introduce the combination of
the representation learning approaches and a discriminator,
of which the overview framework is given by Figure 1. A de-
tailed algorithm of the combination is given in Algorithm 1.

We further add several layers as the discriminator after the
feature extractor network. Since WDGRL guarantees trans-
ferability of the learned representations, the shared discrim-
inator can be directly applied to target domain prediction
when training finished. The objective of the discriminator
fc : Rd → Rl is to compute the softmax prediction with
parameter θc where l is the number of classes. The discrim-
inator loss function is defined as the cross-entropy between
the predicted probabilistic distribution and the one-hot en-
coding of the class labels given the labeled source data:

Lc(x
s, ys) = − 1

ns

ns∑

i=1

l∑

k=1

1(ys
i = k) · logfc(fg(x

s
i ))k,

(8)
where 1(ys

i = k) is the indicator function and fc(fg(x
s
i ))k

corresponds to the k-th dimension value of the distribution
fc(fg(x

s
i )). By combining the discriminator loss, we attain

our final objective function

min
θg,θc

{
Lc + λ max

θw

[
Lwd − γLgrad

]}
, (9)

where λ is the coefficient that controls the balance between
discriminative and transferable feature learning and γ should
be set 0 when optimizing the minimum operator.

Note that this algorithm can be trained by the standard
back-propagation with two iterative steps. In a mini-batch

Algorithm 1 Wasserstein Distance Guided Representation
Learning Combining with Discriminator
Require: source data Xs; target data Xt; minibatch size m; critic

training step n; coefficient γ, λ; learning rate for domain critic
α1; learning rate for classification and feature learning α2

1: Initialize feature extractor, domain critic, discriminator with
random weights θg, θw, θc

2: repeat
3: Sample minibatch {xs

i , y
s
i }m

i=1, {xt
i}m

i=1 from Xs and Xt

4: for t = 1, ..., n do
5: hs ← fg(xs), ht ← fg(xt)
6: Sample h as the random points along straight lines be-

tween hs and ht pairs
7: ĥ ← {hs, ht, h}
8: θw ← θw + α1∇θw[Lwd(xs, xt) − γLgrad(ĥ)]
9: end for

10: θc ← θc − α2∇θcLc(x
s, ys)

11: θg ← θg − α2∇θg[Lc(x
s, ys) + Lwd(xs, xt)]

12: until θg, θw, θc converge

containing labeled source data and unlabeled target data, we
first train the domain critic network to optimality by optimiz-
ing the max operator via gradient ascent and then update the
feature extractor by minimizing the classification loss com-
puted by labeled source data and the estimated Wasserstein
distance simultaneously. The learned representations can be
domain invariant and target discriminative since the parame-
ter θg receives the gradients from both the domain critic and
the discriminator loss.

Theoretical Analysis
In this section, we give some theoretical analysis about the
advantages of using Wasserstein distance for domain adap-
tation.

Gradient Superiority In domain adaptation, to minimize
the divergence between the data distributions Pxs and Pxt ,
the symmetric feature-based methods learn a transforma-
tion function to map the data from the original space to a
common latent space with a distance measure. There are
two situations after the mapping: i). The two mapped fea-
ture distributions have supports that lie on low dimensional
manifolds (Narayanan and Mitter 2010) in the latent space.
In such situation, there will be a gradient vanishing prob-
lem if adopting the domain classifier to make data indis-
tinguishable while Wasserstein distance could provide re-
liable gradients (Arjovsky, Chintala, and Bottou 2017). ii).
The feature representations may fill in the whole space since
the feature mapping usually reduces dimensionality. How-
ever, if a data point lies in the regions where the proba-
bility of one distribution could be ignored compared with
the other distribution, it makes no contributions to the gra-
dients with traditional cross-entropy loss since the gradi-
ent computed by this data point is almost 0. If we adopt
Wasserstein distance as the distance measure, stable gra-
dients can be provided wherever. The detailed analysis is
provided in the supplementary material1. So theoretically

1https://arxiv.org/abs/1707.01217

4061



Deep Learning - adversarial strategy

More complex architecture [Pei et al., AAAI’18]

yf

Gd

Gd

y f

y f

C
N
N

d

d

x y

y f Gd

GRL∂Lf

∂θf

back-propagation

−∂Ld

∂θf

∂Ld

∂θd Ld

^

^

^

^

1

2

K

∂Ly

∂θy

Gf Gy

∂Ly

∂θf

Ly

1

2

K

Figure 2: The architecture of the proposed Multi-Adversarial Domain Adaptation (MADA) approach, where f is the extracted
deep features, ŷ is the predicted data label, and d̂ is the predicted domain label; Gf is the feature extractor, Gy and Ly are the
label predictor and its loss, Gk

d and Lk
d are the domain discriminator and its loss; GRL stands for Gradient Reversal Layer. The

blue part shows the multiple adversarial networks (each for a class, K in total) crafted in this paper. Best viewed in color.

a target domain Dt = {xt
j}nt

j=1 of nt unlabeled examples.
The source domain and target domain are sampled from
joint distributions P (Xs,Ys) and Q(Xt,Yt) respectively,
and note that P ̸= Q. The goal of this paper is to design a
deep neural network that enables learning of transfer features
f = Gf (x) and adaptive classifier y = Gy (f) to reduce the
shifts in the joint distributions across domains, such that the
target risk Pr(x,y)∼q [Gy (Gf (x)) ̸= y] minimized by jointly
minimizing source risk and distribution discrepancy by multi-
adversarial domain adaptation.

There are two technical challenges to enabling domain
adaptation: (1) enhancing positive transfer by maximally
matching the multimode structures underlying data distri-
butions P and Q across domains, and (2) alleviating negative
transfer by preventing false alignment of different distribu-
tion modes across domains. These two challenges motivate
the multi-adversarial domain adaptation approach.

Domain Adversarial Network
Domain adversarial networks have been successfully applied
to transfer learning (Ganin and Lempitsky 2015; Tzeng et al.
2015) by extracting transferable features that can reduce the
distribution shift between the source domain and the target
domain. The adversarial learning procedure is a two-player
game, where the first player is the domain discriminator
Gd trained to distinguish the source domain from the target
domain, and the second player is the feature extractor Gf fine-
tuned simultaneously to confuse the domain discriminator.

To extract domain-invariant features f , the parameters θf

of feature extractor Gf are learned by maximizing the loss of

domain discriminator Gd, while the parameters θd of domain
discriminator Gd are learned by minimizing the loss of the
domain discriminator. In addition, the loss of label predictor
Gy is also minimized. The objective of domain adversarial
network (Ganin and Lempitsky 2015) is the functional:

C0 (θf , θy, θd) =
1

ns

∑

xi∈Ds

Ly (Gy (Gf (xi)) , yi)

− λ

n

∑

xi∈(Ds∪Dt)

Ld (Gd (Gf (xi)) , di),

(1)
where n = ns + nt and λ is a trade-off parameter between
the two objectives that shape the features during learning.
After training convergence, the parameters θ̂f , θ̂y, θ̂d will
deliver a saddle point of the functional (1):

(θ̂f , θ̂y) = arg min
θf ,θy

C0 (θf , θy, θd) ,

(θ̂d) = arg max
θd

C0 (θf , θy, θd) .
(2)

Domain adversarial networks (Ganin and Lempitsky 2015;
Tzeng et al. 2015) are the top-performing architectures for
standard domain adaptation when the distributions of the
source domain and target domain can be aligned successfully.

Multi-Adversarial Domain Adaptation
In practical domain adaptation problems, however, the data
distributions of the source domain and target domain usu-
ally embody complex multimode structures, reflecting either

3936



Hypothesis Transfer
Learning



Motivation

Drawback of classic domain adaptation

I Need to store source data to perform adaptation

I For each new domain, the adaptation process we must retrain with
all source data: prohibitive when the number of domains is large

I Need to take into account the distribution shift

Hypothesis Transfer Learning

I We keep only source hypotheses from the source domain

I No explicit access to source domain (data, distribution)

I We require some target labeled data



Motivation

Problem Understanding HTL Domain Adaptation Problem The Limits of Domain Adaptation Hypothesis Transfer Learning

Hypothesis Transfer Learning

14 / 33

Biased regularized learning

I Given a source hypothesis hS (or weighted combination of source
hypotheses)

I Labeled target training set LT = {(xi , yi )}mi=1

I Optimization problem:

argminh∈H

m∑

i=1

1

m
`(h(xi ), yi ) + λ‖h − hS‖



Some Guarantees

I Strongly convex regularizer ‖ · ‖
I Smooth, convex, Lispchitz loss function

I Guarantee (simplified) obtained with Algorithmic Stability
framework [Kuzborskij et al., 2013, 2017]:

εT (h) ≤ ε̂LT (h) + O

(√
H × εT (hS)

mλ

)
+ O

(
1

m

)

with H ≤ mλ

Implications

I If hS is a bad fit, bound is similar to standard bounds

I If εT (hS) is small enough, the bound is better - less examples
required- and can even tend to a fast rate O(1/m)



Representation Transfer from NN
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Risk bounds for transferring representations with and without fine-tuning

Theorem 1. Let ! : R ! R be a non-decreasing func-
tion. Suppose PS , PT , hS , hT , f̂ , G have the property that
8ĝS 2 G, min

g2G
RT (g � f̂)  !(RS(ĝS � f̂)). Let ĝT :=

arg min
g2G

R̂T (g � f̂). Then with probability at least 1 � �

over pairs of training sets for tasks S and T , RT (ĝT � f̂)

 !(R̂S(ĝS � f̂) + 2
q

2dH log(2emS/dH)+2 log(8/�)
mS

) +

4
q

2dG log(2emT /dG)+2 log(8/�)
mT

.
Proof. Let g⇤T := arg min

g2G
RT (g � f̂). With probability at

least 1 � �,

RT (ĝT � f̂)

 R̂T (ĝT � f̂) + 2
q

2dG log(2emT /dG)+2 log(8/�)
mT

 R̂T (g⇤T � f̂) + 2
q

2dG log(2emT /dG)+2 log(8/�)
mT

 RT (g⇤T � f̂) + 4
q

2dG log(2emT /dG)+2 log(8/�)
mT

 !(RS(ĝS � f̂)) + 4
q

2dG log(2emT /dG)+2 log(8/�)
mT

 !(R̂S(ĝS � f̂) + 2
q

2dH log(2emS/dH)+2 log(8/�)
mS

) +

4
q

2dG log(2emT /dG)+2 log(8/�)
mT

.

Using m training points and a hypothesis class of VC di-
mension d, with probability at least 1 � �, for all hypothe-
ses h simultaneously, the risk R(h) and empirical risk R̂(h)

satisfy |R(h)�R̂(h)|  2
q

2d log(2em/d)+2 log(4/�)
m (Mohri

et al., 2012). For G this yields the first and third inequalities
with probability at least 1 � �

2 . For H , because ! is non-
decreasing, this yields the fifth inequality with probability
at least 1 � �

2 . Applying the union bound achieves the de-
sired result. The second inequality is by the definition of ĝT

and the fourth inequality follows from our assumption.

3.1. Neural network example with fixed representation

In Theorem 2, we give an example of the transferrabil-
ity property required by Theorem 1. We consider a neu-
ral network with a single hidden layer (see Figure 2). We
propose transferring the lower-level weights learned on S,
corresponding to f̂ 2 F . Therefore only the upper-level
weights, which correspond to G, have to be learned on T .
We want to show f̂ is also useful for T . To do this, we as-
sume there are some lower-level weights that perform well
on both S and T . We also assume PS and PT have the rel-
ative rotation invariance property and that the upper-level
weights have fixed magnitude. This is so that a point x for
which f̂(x) contributes to the risk on T cannot be ‘hidden’
from the risk of using f̂ on S, either through low PS(x) or
low magnitude upper-level weights. Hence RS(ĝS � f̂) is a
reliable indicator of the usefulness of f̂ on T .

Learn T
from scratch

Learn ĝS � f̂
on S

f̂

ĝS

Transfer f̂ from S,
learn ĝT on T

f̂

ĝT

Figure 2. Neural network example learning T from scratch (left)
and with weights transferred from S (right). Thin blue and thick
red lines show weights trained on S and T respectively. Under
certain assumptions using weight transfer yields low risk on T .

Let X = Rn and Z = Rk. Let F be the function class such
that f(x) = [a(w1 · x), . . . , a(wk · x)], where wi 2 Rn

for 1  i  k, a : R ! R is an odd function4 and
· is the dot product. Let G be the function class such that
g(z) = sign(v · z), where v 2 {�1, 1}k. Suppose 9f 2
F, gS , gT 2 G such that max[RS(gS �f), RT (gT �f)]  ✏.
Let f̂(x) := [a(ŵ1 · x), . . . , a(ŵk · x)]. Given wi and
ŵi, pick nonzero constants ↵i and �i such that ||wi|| =
||↵iŵi � �iwi|| and wi · (↵iŵi � �iwi) = 0. Let M be a
2k⇥n matrix with rows w1,↵1ŵ1��1w1, . . . , wk,↵kŵk�
�kwk. Suppose M is full rank.5 Suppose 8x, x0 such that
||Mx|| = ||Mx0||, PT (x)  cPS(x0) for some c � 1,
which we call relative rotation invariance. If M is an
orthogonal matrix then 8x, x0 such that ||x|| = ||x0||,
PT (x)  cPS(x0).6

Theorem 2. Let !(R) := cR + ✏(1 + c). Then 8ĝS 2 G,
min
g2G

RT (g � f̂)  !(RS(ĝS � f̂)).

4. Representation fine-tuned using target task

Consider learning ĝS � f̂ on S, and then using f̂ and
RS(ĝS � f̂) to prune the representations searched on T to
F̂ ✓ F , as in Figure 1. If some shared representation f
exists, we hope that small RS(ĝS � f̂) indicates that f̂ is
close to f and hence we may search a smaller F̂ on T . We
propose learning a stochastic hypothesis (i.e. a distribution
over H) on T with the help of a prior constructed from S.
This allows us to apply a PAC-Bayes bound on the risk of

4i.e. a(�x) = �a(x). Examples are tanh, sign and identity.
5To see that this condition is necessary, consider the following

example where M is not full rank. Let n = 4, k = 2, hS =
sign(x1) and hT = sign(x2). For f(x) = [x1 + x2, x1 � x2],
gS(z) = sign(z1 + z2) and gT (z) = sign(z1 � z2), we have
RS(gS � f) = RT (gT � f) = 0. On S we learn f̂(x) = [x1 +

x3, x1�x3] and ĝS(z) = sign(z1 +z2), so that RS(ĝS � f̂) = 0

but in general min
g2G

RT (g � f̂) > 0 since f̂ ignores x2.
6For example, PS and PT are both spherical Gaussians. For a

multivariate Gaussian distribution this is achieved by the whiten-
ing preprocessing step x ! ⇤1/2UT x, where the columns of
U and entries of the diagonal matrix ⇤ are the eigenvectors and
eigenvalues of the distribution’s covariance matrix respectively.

3

“Result” of McNamara and Balcan, ICML’17

εT (ĝT ·f̂ ) ≤ ω


ε̂S

(
ĝS · f̂

)
+ 2O



√

VCdim(H)

mS




+O



√

VCdim(g)

mT




ω: measure of transferability

I Justify representation transfer

I Better guarantee than learning from scratch is VCdim(g) is small

Other perspective: Transferability through SGD ? [kuzborskij, arxiv
2017] [Hardt et al., 2016]



Conclusion



Conclusion

I Transfer Learning is a key problem for a wide applicability of
machine learning methods

I Many methods, good empirical results on some tasks

I The theoretical foundations are still insufficient to explain/justify
transferability

I Guarantees specific to the data/method?
I What to optimize/transfer

I Parameter tuning

I The control of negative transfer

I Other areas: lifelong learning, concept drift, knowledge distillation,
distributed models, reinforcement learning, . . .

Still a lot to do in an important topic!


