Automatic Error Function Learning with
Interpretable Compositional Networks

Florian Richoux
joint work with Jean-Francois Baffier, RIKEN AIP

June 25, 2020

Florian Richoux Learning Error Functions through ICN

1/27

o Constraint Programming
© Motivation

© Learning Error Functions
© Experimental results

© Conclusion

o Constraint Programming
© Motivation

© Learning Error Functions
© Experimental results

© Conclusion

What is Constraint Programming?

What is CP?

Set of methods to model and solve combinatorial problems.

Constraint Network
A constraint network (CN) is defined by a tuple (V, D, C) such that:

V' : Set of variables.
CN = | D: Domain (set of possible values of variables).
C': Set of constraints (i.e., predicates).

Constraint Satisfaction Problem (CSP)

Given a constraint network, does a solution exist?

Florian Richoux Learning Error Functions through ICN 4/27

Example: the 3-color problem

CN for 3-color

Variables V' = {vy,...,v,}, one variable for each vertex.
Domain D = {0, 1,2}, one value for each color.

Constraint #, one per edge.

Florian Richoux Learning Error Functions through ICN 5/27

Example: the 3-color problem

CN for 3-color

Variables V' = {vy,...,v,}, one variable for each vertex.
Domain D = {0, 1,2}, one value for each color.

Constraint #, one per edge.

A D CSP formula
(a #b) A(a#c)A
(b#c) A (a #d)
B C

v

Florian Richoux Learning Error Functions through ICN 5/27

Example: the 3-color problem

CN for 3-color

Variables V' = {vy,...,v,}, one variable for each vertex.
Domain D = {0, 1,2}, one value for each color.

Constraint #, one per edge.

A D CSP formula
(a #b) A(a#c)A
(b#c)A(a#d)
B C A solution
a=0,b=2c=d=1

Florian Richoux Learning Error Functions through ICN 5/27

Intuitive definition of EFN

Error Function Networks (EFN)

V' : Set of variables.
EFN = | D: Domain (set of possible values of variables).
F: Set of error functions f.: D¥ — R*.

Florian Richoux Learning Error Functions through ICN 6 /27

Intuitive definition of EFN

Error Function Networks (EFN)

V : Set of variables.

EFN = | D: Domain (set of possible values of variables).
F: Set of error functions f.: D¥ — R*.

Intuition behind error functions

Let (z1,22,23) be an assignment for f.:
» If fo(x1, 2, 23) = 0 then (x1,x9, x3) satisfies the constraint c.
» If fo(x1,22,23) is small then (21,29, 23) is close to satisfy c.

» If fo(z1, 2, x3) is high then (z1,z2,x3) is far from satisfying c.

Florian Richoux Learning Error Functions through ICN 6 /27

Intuitive definition of EFN

Error Function Networks (EFN)

V' : Set of variables.
EFN = | D: Domain (set of possible values of variables).
F: Set of error functions f.: D¥ — R*.

Intuition behind error functions

Let (z1,22,23) be an assignment for f.:
» If fo(x1, 2, 23) = 0 then (x1,x9, x3) satisfies the constraint c.
» If fo(x1,22,23) is small then (21,29, 23) is close to satisfy c.

» If fo(z1, 2, x3) is high then (z1,z2,x3) is far from satisfying c.

Error Function Satisfaction Problem (EFSP)

Given a error function network, does a solution exist?

Florian Richoux Learning Error Functions through ICN 6 /27

Intuitive definition of EFN

Constraint representation

Error function = degree of dissatisfaction of a constraint.

For example

Consider f.(z,y) := |z — y| (representing the constraint x = y)
> With z =4 and y =4, f.(4,4) =0
» Withz=4and y =5, f.(4,5) =1
> With 2 =4 and y = 500, f.(4,500) = 496

Florian Richoux Learning Error Functions through ICN 7/27

@ Constraint Programming
© Motivation

© Learning Error Functions
© Experimental results

© Conclusion

Offers a landscape on assignments :E‘J

Why

Offers a landscape on assignments sEJ

No structures
1(z) = 1 if & is a solution
1 0 otherwise <

9/27

Why EFN?

Offers a landscape on assignments :i"J

No structures

1(F) = 1 if & is a solution
~ | 0 otherwise

Constraint Network
1(Z) = #{Number of satisfied constraints} J

Florian Richoux Learning Error Functions through ICN 9/27

Why EFN?

Offers a landscape on assignments :i"J

No structures

1(F) = 1 if & is a solution
~ | 0 otherwise

Constraint Network
1(Z) = #{Number of satisfied constraints} J
Error Function Network :
Uz)= > fe(a) }
fe€F

Florian Richoux Learning Error Functions through ICN 9/27

Solvers can exploit efficiently this landscape. '

Pros
Solvers can exploit efficiently this landscape.

Cons
Making a EFN model is complicated: what is a good error function?

Why EFN?

Pros

Solvers can exploit efficiently this landscape.

Cons

Making a EFN model is complicated: what is a good error function?

For example
Is fe(z,y) = |z — y| relevant for the constraint = y?
» If z =4 and y = 5, then change y to 4 or x to 5 = 1 action.
» If x =4 and y = 500, then change y to 4 or x to 500 = 1 action.

y

Florian Richoux Learning Error Functions through ICN 10 /27

Why EFN?

Pros

Solvers can exploit efficiently this landscape.

—p——

Con

Making a EFN model is complicated: what is a good error function?

S —

For example

Is fe(z,y) = |z — y| relevant for the constraint = y?
» If z =4 and y = 5, then change y to 4 or z to 5 = 1 action.
» If x =4 and y = 500, then change y to 4 or x to 500 = 1 action.

Florian Richoux Learning Error Functions through ICN 10 /27

@ Constraint Programming
© Motivation

© Learning Error Functions
© Experimental results

© Conclusion

Learning Error Functions

Error functions seen as (non-linear) combination of elementary operations.)

Goal
For each constraint, learn a good combination of elementary operations. J

The user provides a CN The user gets an EFN
V' . Variables V . Variables
D : Domain Q D : Domain
C : Constraints F : Error functions

Florian Richoux Learning Error Functions through ICN 12 /27

Learning Error Functions

Supervised learning

Learn error functions similar to the Hamming error.

Hamming error h.(Z)

he(Z): minimal number of values from & to change to get a solution.

Loss function of our supervised learning

Let 6. be our model for one error function f,.

£<9C7 hc) = Z: IQC(f) - hc(fﬂ

Florian Richoux Learning Error Functions through ICN 13 /27

Learning Error Functions

Supervised learning

Learn error functions similar to the Hamming error.

Hamming error h.(Z)

he(Z): minimal number of values from & to change to get a solution.

Loss function of our supervised learning

Let 6. be our model for one error function f,.

£<9C7 hc) = Z: IQC(f) - hc(fﬂ

So what is our model 6.7)

Florian Richoux Learning Error Functions through ICN 13 /27

|dea based upon CPPN

Our model is a variation of Compositional Pattern-Producing Networks.)

Regular neural networks
Usually, neurons in NN contains sigmoid-like functions only, like ReLU. J

Florian Richoux Learning Error Functions through ICN 14 /27

http://otoro.net/neurogram/

|dea based upon CPPN

Our model is a variation of Compositional Pattern-Producing Networks. J

Regular neural networks

Usually, neurons in NN contains sigmoid-like functions only, like ReLU.

v

CPPN idea

CPPN's neurons can contain many other kinds of functions:
sigmoids, Gaussians, trigonometric functions, linear functions, ...

Florian Richoux Learning Error Functions through ICN 14 /27

http://otoro.net/neurogram/

|dea based upon CPPN

Our model is a variation of Compositional Pattern-Producing Networks. J

Regular neural networks

Usually, neurons in NN contains sigmoid-like functions only, like ReLU.

v

CPPN idea

CPPN'’s neurons can contain many other kinds of functions:
sigmoids, Gaussians, trigonometric functions, linear functions, ...

CPPN used to make 2D/3D images (source: otoro.net/neurogram/)

outputs R G B

inputs
. .

X 'y d bias

Florian Richoux Learning Error Functions through ICN 14 /27

http://otoro.net/neurogram/

Interpretable Compositional Networks

We take 2 ideas from CPPN to make ICN
» Neurons can contain one operation among many possible ones,

» ICN deals with an input space by taking one by one all elements.

Florian Richoux Learning Error Functions through ICN 15 /27

Interpretable Compositional Networks

We take 2 ideas from CPPN to make ICN
» Neurons can contain one operation among many possible ones,

» |CN deals with an input space by taking one by one all elements.

Input space of one given constraint

Florian Richoux Learning Error Functions through ICN 15 /27

Interpretable Compositional Networks

We take 2 ideas from CPPN to make ICN
» Neurons can contain one operation among many possible ones,

» |CN deals with an input space by taking one by one all elements.

Input space of one given constraint

e

(1,0,2,2,1)

® \2 O e
e @1.03.2,4)

e
OO ®

Florian Richoux Learning Error Functions through ICN 15 /27

Interpretable Compositional Networks

Our ICN architecture

Input: 1 vector of size n Transformation layer
| 18 operations |

I/0: k vectors of size n l

m Arithmetic layer

I/0: 1 vector of size n l
Aggregation layer

‘ Comparison layer
| 9 operations |

I/0: 1 scalar

Output: 1 scalar

Florian Richoux Learning Error Functions through ICN

16 /27

Interpretable Compositional Networks

Our ICN architecture

Input:

1 vector of size n Transformation layer
18 operations

I/0: k vectors of size n
> Identity
» Number of elements on the right equals to y

I/0: 1 t £
/ vester © > Max(0, y - param)

>

I/0: 1 scalar :
/ ¥ Comparison layer

| 9 operations |

Output: 1 scalar

Florian Richoux Learning Error Functions through ICN 16 / 27

Interpretable Compositional Networks

Our ICN architecture

Input: 1 vector of size n Transformation layer

| 18 operations

I/0: k vectors of size n l

————

m Arithmetic layer
p » pairwise addition

I/0: 1 vector of size n

» pairwise multiplication
I/0: 1 scalar ‘ Co

= o= =

| 9 operations |

Output: 1 scalar

Florian Richoux Learning Error Functions through ICN

Interpretable Compositional Networks

Our ICN architecture

Input: 1 vector of size n Transformation layer
| 18 operations |

I/0: k vectors of size n l

m Arithmetic layer
I/0: 1 vector of size n I

2 op| Aggregation layer

I/0: 1 scalar

» Sum of elements
| 9 oper

» Number of elements greater than 0
Output: 1 scalar

y

Florian Richoux Learning Error Functions through ICN 16 / 27

Interpretable Compositional Networks

Our ICN architecture

Input: 1 vector of size n Transformation layer
l 18 operations |

I/0: k vect > Identity

> | input - param |

1/0: 1 vect P Euclidian division of the input by the domain size

Co rison laye
9 operations |

>

I/0: 1 scalar

Output: 1 scalar

Florian Richoux Learning Error Functions through ICN 16 / 27

Interpretable Compositional Networks

Our ICN architecture

Input: 1 vector of size n Transformation layer
| 18 operations |

I/0: k vectors of size n l

m Arithmetic layer

I/0: 1 vector of size n l
Aggregation layer

‘ Comparison layer
| 9 operations |

I/0: 1 scalar

Output: 1 scalar

Florian Richoux Learning Error Functions through ICN

16 /27

Vector of 29 bits:
one bit for each operations.

Individual modeling

Vector of 29 bits:
one bit for each operations.

Initialization

Draw 100 individuals randomly.

Learn ICN with Genetic Algorithms

Individual modeling
Vector of 29 bits: iy Jariati®
. . 12,
one bit for each operations. “tlon ¢ Seng, -
y 4 select!
&
Initialization E
Draw 100 individuals randomly. pualati®” y
)
Stup .
Mter;
- pare™ a7
Evaluation sceme™
ReP
Minimize the loss function £(0., h.).
o

Florian Richoux Learning Error Functions through ICN 17 / 27

Learn ICN with Genetic Algorithms

Individual modeling

Vector of 29 bits:
one bit for each operations.

Initialization

Draw 100 individuals randomly.

Evaluation

Minimize the loss function £(0., h.).

Replacement

Elitism merge and deterministic
tournament to keep 100 individuals.

Florian Richoux

Initj; varia®
alizay;
o Geny,
o &
4
)
&
o
Eva“‘a
poret®
ef
cem
Fep\a

Learning Error Functions through ICN

17 /27

Learn ICN with Genetic Algorithms

Individual modeling

Vector of 29 bits:
one bit for each operations.

Initialization

Draw 100 individuals randomly.

Evaluation

Minimize the loss function £(0., h.).

Replacement

Elitism merge and deterministic
tournament to keep 100 individuals.

Stop criteria

Reaching 400 generations.

Florian Richoux

Initj; varia®
alizay;
o Geny,
o &
4
)
&
o
Eva“‘a
poret®
ef
cem
Fep\a

Learning Error Functions through ICN

17 /27

Learn ICN with Genetic Algorithms

Individual modeling
Vector of 29 bits: iy Jariati®
one bit for each operations. “2tion - ey, -
4 & select!

&
Initialization et S9N
Draw 100 individuals randomly. praluatt®"

op,
e Er'te”a?

Evaluation aceme™ =

reP
Minimize the loss function £(0., h.).
Replacement Selection
Elitism merge and deterministic Tournament between 2 individuals.J
tournament to keep 100 individuals.
Stop criteria
Reaching 400 generations.

Florian Richoux Learning Error Functions through ICN 17 / 27

Learn ICN with Genetic Algorithms

Individual modeling

Vector of 29 bits:
one bit for each operations.

Initialization

Draw 100 individuals randomly.

Evaluation

Minimize the loss function £(0., h.).

Replacement

Elitism merge and deterministic
tournament to keep 100 individuals.

Stop criteria

Reaching 400 generations.

Init;. riatl
hltldl'aatl a
on A Genyy,
5&
&
tio
Eva\ua
pare™®
en
cem
pepl?
Selection

Tournament between 2 individuals. |

Variation

One-point crossovers.
One-flip mutations.

Florian Richoux

Learning Error Functions through ICN

17 /27

@ Constraint Programming
© Motivation

© Learning Error Functions
© Experimental results

© Conclusion

Tested constraints

5 major constraints:

» All different: variables must all be assigned to different values.

» Ordered: assignment of n variables (21, ...,z,) must be ordered,
given a total order.

» Linear sum: equation 1 + x5 + ...+ 2, = p must hold.

» No overlap: variables represent tasks with a given length. A
variable's value is its task starting time. No tasks must overlap.

» Minimum: the minimum value of an assighment must check a given
numerical condition.

Florian Richoux Learning Error Functions through ICN 19 /27

Three experimental protocols

Exp. 1: Scaling

Question: Do error functions learned over small spaces scale?
> Learn error functions over small spaces (~ 500 assignments),
> Test them over huge spaces (~ 1020 assignments).

Florian Richoux Learning Error Functions through ICN 20 /27

Three experimental protocols

Exp. 1: Scaling
Question: Do error functions learned over small spaces scale?
» Learn error functions over small spaces (~ 500 assignments),

» Test them over huge spaces (~ 10%%° assignments).

Exp. 2: Learning over incomplete spaces
Question: Can we learn efficient error function over incomplete spaces?
> Learning over 200 sampled assignments in large spaces (~ 50.000),

» Test them over huge spaces (~ 102%° assignments).

Florian Richoux Learning Error Functions through ICN 20 /27

Three experimental protocols

Exp. 1: Scaling
Question: Do error functions learned over small spaces scale?
» Learn error functions over small spaces (~ 500 assignments),

» Test them over huge spaces (~ 10%%° assignments).

Exp. 2: Learning over incomplete spaces
Question: Can we learn efficient error function over incomplete spaces?
> Learning over 200 sampled assignments in large spaces (~ 50.000),

» Test them over huge spaces (~ 102%° assignments).

Exp. 3: Solving Sudoku with learned error functions

Question: Can a learned error function be used to solve an actual
problem?

» Solve Sudoku with and without error functions.

Florian Richoux Learning Error Functions through ICN 20 /27

Experimental result 1: Scaling

Constraints | median | mean | most freq.
all different | 0 003 |0 (97)
ordered 0.08 0.08 | 0.08 (100)
linear sum | 0.01 0.05 | 0.01 (74)
no overlap | 0.14 0.19 | 0.11 (50)
minimum 0 004 | O (88)

Table: Training error over small spaces (500 assignments).

all_diff

ord | lin_sum

no_ol | min

0

1.27

0.03

2.68 0

Table: Mean test error over 20,000 assignments in huge spaces.

Florian Richoux

Learning Error Functions through ICN

21 /27

Experimental result 1:

Constraints

most freq.

all different
ordered
linear sum
no overlap
minimum

Scaling
median | mean
0 0.03
0.08 0.08
0.01 0.05
0.14 0.19
0 0.04

0

0

0.08 (100)
0.01 (74)
0.11 (50)

(97)

(88)

Table: Training error over small spaces (500 assignments).

all_diff

ord | lin_sum

no_ol

min

0

1.27 0.03

2.68

0

Table: Mean test error over 20,000 assignments in huge spaces.

Test spaces of size 102%°, but. ..

» Not easy to compute the Hamming error for Ordered and NoOverlap.

» Estimation of their Hamming error over spaces of size ~ 10'°.

Flori

ian Richoux Learning Error Functions through ICN 21 /27

Experimental result 2: Incomplete spaces

Constraints | median | mean | most freq.
all different | 0.44 0.44 | 0.44 (99)
ordered 0.44 0.46 | 0.44 (66)
linear sum | 2.03 1.70 | 0.85 (37)
no overlap | 2.33 239 | 2.29 (48)
minimum 0.59 0.59 | 0.59 (78)

Table: Training error over incomplete large spaces (=~ 50.000 assignments).

all_diff

ord

lin_sum

no_ol | min

0

1.80

0.03

2.02 0

Table: Mean test error over 20,000 assignments in huge spaces.

Florian Richoux

Learning Error Functions through ICN

22 /27

Experimental result 3: Sudoku

Error Function mean | median | std dev | min | max
no error functions | 1044 764 727 | 250 | 3546
learned 383 331 268 57 | 1812
hard-coded 175 145 107 46 662
hand-crafted 149 125 107 26 608

Table: Run-times in milliseconds over 100 runs to solve Sudoku.

Rows in this table
@ No error functions (pure CN),

@ The most frequently learned error function for All different in
Experiment 1 run through the ICN,

© The same function but hard-coded in C++,
© A hand-crafted error function (Petit et. al 2001).

Florian Richoux Learning Error Functions through ICN 23 /27

@ Constraint Programming
© Motivation

© Learning Error Functions
© Experimental results

© Conclusion

Conclusion

Conclusion
» EFN power with CN model simplicity.
Interpretable model.
Scale!

>
>
» Can learn over incomplete spaces.
» No cherry-picked operations.

>

Use it fully automatically or as a decision support system.

Florian Richoux Learning Error Functions through ICN 25 /27

Conclusion

Conclusion
» EFN power with CN model simplicity.
» Interpretable model.
» Scale!
» Can learn over incomplete spaces.
» No cherry-picked operations.
>

Use it fully automatically or as a decision support system.

Perspectives

» Need more diverse and expressive operations for very combinatorial
constraints (Ordered, No overlap).

» Reinforcement learning to find error functions adapted to the solver.

Florian Richoux Learning Error Functions through ICN 25 /27

Paper and source code

Get the paper! Get the codel!

arxiv.org/abs/2002.09811 github.com /richoux/LearningCostFunctions

Florian Richoux Learning Error Functions through ICN 26 /27

https://arxiv.org/abs/2002.09811
https://github.com/richoux/LearningErrorFunctions

florian.richoux@polytechnique.edu
E1 ©FIoRicx

mailto:florian.richoux@polytechnique.edu
https://twitter.com/FloRicx

	Constraint Programming
	Motivation
	Learning Error Functions
	Experimental results
	Conclusion

