
Automatic Error Function Learning with

Interpretable Compositional Networks

Florian Richoux
joint work with Jean-François Ba�er, RIKEN AIP

June 25, 2020

Florian Richoux Learning Error Functions through ICN 1 / 27

Outline

1 Constraint Programming

2 Motivation

3 Learning Error Functions

4 Experimental results

5 Conclusion

Florian Richoux Learning Error Functions through ICN 2 / 27

Outline

1 Constraint Programming

2 Motivation

3 Learning Error Functions

4 Experimental results

5 Conclusion

Florian Richoux Learning Error Functions through ICN 3 / 27

What is Constraint Programming?

What is CP?
Set of methods to model and solve combinatorial problems.

Constraint Network

A constraint network (CN) is defined by a tuple (V, D, C) such that:

CN =

 V : Set of variables.
D : Domain (set of possible values of variables).
C : Set of constraints (i.e., predicates).

Constraint Satisfaction Problem (CSP)

Given a constraint network, does a solution exist?

Florian Richoux Learning Error Functions through ICN 4 / 27

Example: the 3-color problem

CN for 3-color

Variables V = {v1, . . . , vn}, one variable for each vertex.

Domain D = {0, 1, 2}, one value for each color.

Constraint 6=, one per edge.

Florian Richoux Learning Error Functions through ICN 5 / 27

Example: the 3-color problem

CN for 3-color

Variables V = {v1, . . . , vn}, one variable for each vertex.

Domain D = {0, 1, 2}, one value for each color.

Constraint 6=, one per edge.

CSP formula

(a 6= b) ∧ (a 6= c)∧
(b 6= c) ∧ (a 6= d)

Florian Richoux Learning Error Functions through ICN 5 / 27

Example: the 3-color problem

CN for 3-color

Variables V = {v1, . . . , vn}, one variable for each vertex.

Domain D = {0, 1, 2}, one value for each color.

Constraint 6=, one per edge.

CSP formula

(a 6= b) ∧ (a 6= c)∧
(b 6= c) ∧ (a 6= d)

A solution
a = 0, b = 2, c = d = 1

Florian Richoux Learning Error Functions through ICN 5 / 27

Intuitive de�nition of EFN

Error Function Networks (EFN)

EFN =

 V : Set of variables.
D : Domain (set of possible values of variables).
F : Set of error functions fc : Dk → R+.

Intuition behind error functions

Let (x1, x2, x3) be an assignment for fc:
I If fc(x1, x2, x3) = 0 then (x1, x2, x3) satisfies the constraint c.
I If fc(x1, x2, x3) is small then (x1, x2, x3) is close to satisfy c.
I If fc(x1, x2, x3) is high then (x1, x2, x3) is far from satisfying c.

Error Function Satisfaction Problem (EFSP)

Given a error function network, does a solution exist?

Florian Richoux Learning Error Functions through ICN 6 / 27

Intuitive de�nition of EFN

Error Function Networks (EFN)

EFN =

 V : Set of variables.
D : Domain (set of possible values of variables).
F : Set of error functions fc : Dk → R+.

Intuition behind error functions

Let (x1, x2, x3) be an assignment for fc:
I If fc(x1, x2, x3) = 0 then (x1, x2, x3) satisfies the constraint c.
I If fc(x1, x2, x3) is small then (x1, x2, x3) is close to satisfy c.
I If fc(x1, x2, x3) is high then (x1, x2, x3) is far from satisfying c.

Error Function Satisfaction Problem (EFSP)

Given a error function network, does a solution exist?

Florian Richoux Learning Error Functions through ICN 6 / 27

Intuitive de�nition of EFN

Error Function Networks (EFN)

EFN =

 V : Set of variables.
D : Domain (set of possible values of variables).
F : Set of error functions fc : Dk → R+.

Intuition behind error functions

Let (x1, x2, x3) be an assignment for fc:
I If fc(x1, x2, x3) = 0 then (x1, x2, x3) satisfies the constraint c.
I If fc(x1, x2, x3) is small then (x1, x2, x3) is close to satisfy c.
I If fc(x1, x2, x3) is high then (x1, x2, x3) is far from satisfying c.

Error Function Satisfaction Problem (EFSP)

Given a error function network, does a solution exist?

Florian Richoux Learning Error Functions through ICN 6 / 27

Intuitive de�nition of EFN

Constraint representation

Error function = degree of dissatisfaction of a constraint.

For example

Consider fc(x, y) := |x− y| (representing the constraint x = y)
I With x = 4 and y = 4, fc(4, 4) = 0

I With x = 4 and y = 5, fc(4, 5) = 1

I With x = 4 and y = 500, fc(4, 500) = 496

Florian Richoux Learning Error Functions through ICN 7 / 27

Outline

1 Constraint Programming

2 Motivation

3 Learning Error Functions

4 Experimental results

5 Conclusion

Florian Richoux Learning Error Functions through ICN 8 / 27

Why EFN?

Offers a landscape on assignments ~x.

No structures

l(~x) =

{
1 if ~x is a solution
0 otherwise

Constraint Network

l(~x) = #{Number of satisfied constraints}

Error Function Network

l(~x) =
∑

fc∈F

fc(~x)

Florian Richoux Learning Error Functions through ICN 9 / 27

Why EFN?

Offers a landscape on assignments ~x.

No structures

l(~x) =

{
1 if ~x is a solution
0 otherwise

Constraint Network

l(~x) = #{Number of satisfied constraints}

Error Function Network

l(~x) =
∑

fc∈F

fc(~x)

Florian Richoux Learning Error Functions through ICN 9 / 27

Why EFN?

Offers a landscape on assignments ~x.

No structures

l(~x) =

{
1 if ~x is a solution
0 otherwise

Constraint Network

l(~x) = #{Number of satisfied constraints}

Error Function Network

l(~x) =
∑

fc∈F

fc(~x)

Florian Richoux Learning Error Functions through ICN 9 / 27

Why EFN?

Offers a landscape on assignments ~x.

No structures

l(~x) =

{
1 if ~x is a solution
0 otherwise

Constraint Network

l(~x) = #{Number of satisfied constraints}

Error Function Network

l(~x) =
∑

fc∈F

fc(~x)

Florian Richoux Learning Error Functions through ICN 9 / 27

Why EFN?

Pros
Solvers can exploit efficiently this landscape.

Cons
Making a EFN model is complicated: what is a good error function?

For example

Is fc(x, y) = |x− y| relevant for the constraint x = y?
I If x = 4 and y = 5, then change y to 4 or x to 5 ⇒ 1 action.
I If x = 4 and y = 500, then change y to 4 or x to 500 ⇒ 1 action.

Florian Richoux Learning Error Functions through ICN 10 / 27

Why EFN?

Pros
Solvers can exploit efficiently this landscape.

Cons
Making a EFN model is complicated: what is a good error function?

For example

Is fc(x, y) = |x− y| relevant for the constraint x = y?
I If x = 4 and y = 5, then change y to 4 or x to 5 ⇒ 1 action.
I If x = 4 and y = 500, then change y to 4 or x to 500 ⇒ 1 action.

Florian Richoux Learning Error Functions through ICN 10 / 27

Why EFN?

Pros
Solvers can exploit efficiently this landscape.

Cons
Making a EFN model is complicated: what is a good error function?

For example

Is fc(x, y) = |x− y| relevant for the constraint x = y?
I If x = 4 and y = 5, then change y to 4 or x to 5 ⇒ 1 action.
I If x = 4 and y = 500, then change y to 4 or x to 500 ⇒ 1 action.

Florian Richoux Learning Error Functions through ICN 10 / 27

Why EFN?

Pros
Solvers can exploit efficiently this landscape.

Cons
Making a EFN model is complicated: what is a good error function?

For example

Is fc(x, y) = |x− y| relevant for the constraint x = y?
I If x = 4 and y = 5, then change y to 4 or x to 5 ⇒ 1 action.
I If x = 4 and y = 500, then change y to 4 or x to 500 ⇒ 1 action.

Florian Richoux Learning Error Functions through ICN 10 / 27

Outline

1 Constraint Programming

2 Motivation

3 Learning Error Functions

4 Experimental results

5 Conclusion

Florian Richoux Learning Error Functions through ICN 11 / 27

Learning Error Functions

Error functions seen as (non-linear) combination of elementary operations.

Goal
For each constraint, learn a good combination of elementary operations.

The user provides a CN V : Variables
D : Domain
C : Constraints

The user gets an EFN V : Variables
D : Domain
F : Error functions

Florian Richoux Learning Error Functions through ICN 12 / 27

Learning Error Functions

Supervised learning

Learn error functions similar to the Hamming error.

Hamming error hc(~x)

hc(~x): minimal number of values from ~x to change to get a solution.

Loss function of our supervised learning

Let θc be our model for one error function fc.

L(θc, hc) =
∑
~x

|θc(~x)− hc(~x)|

So what is our model θc?

So what is our model θc?

Florian Richoux Learning Error Functions through ICN 13 / 27

Learning Error Functions

Supervised learning

Learn error functions similar to the Hamming error.

Hamming error hc(~x)

hc(~x): minimal number of values from ~x to change to get a solution.

Loss function of our supervised learning

Let θc be our model for one error function fc.

L(θc, hc) =
∑
~x

|θc(~x)− hc(~x)|

So what is our model θc?

So what is our model θc?

Florian Richoux Learning Error Functions through ICN 13 / 27

Idea based upon CPPN

Our model is a variation of Compositional Pattern-Producing Networks.

Regular neural networks

Usually, neurons in NN contains sigmoid-like functions only, like ReLU.

CPPN idea
CPPN’s neurons can contain many other kinds of functions:
sigmoids, Gaussians, trigonometric functions, linear functions, . . .

CPPN used to make 2D/3D images (source: otoro.net/neurogram/)

Florian Richoux Learning Error Functions through ICN 14 / 27

http://otoro.net/neurogram/

Idea based upon CPPN

Our model is a variation of Compositional Pattern-Producing Networks.

Regular neural networks

Usually, neurons in NN contains sigmoid-like functions only, like ReLU.

CPPN idea
CPPN’s neurons can contain many other kinds of functions:
sigmoids, Gaussians, trigonometric functions, linear functions, . . .

CPPN used to make 2D/3D images (source: otoro.net/neurogram/)

Florian Richoux Learning Error Functions through ICN 14 / 27

http://otoro.net/neurogram/

Idea based upon CPPN

Our model is a variation of Compositional Pattern-Producing Networks.

Regular neural networks

Usually, neurons in NN contains sigmoid-like functions only, like ReLU.

CPPN idea
CPPN’s neurons can contain many other kinds of functions:
sigmoids, Gaussians, trigonometric functions, linear functions, . . .

CPPN used to make 2D/3D images (source: otoro.net/neurogram/)

Florian Richoux Learning Error Functions through ICN 14 / 27

http://otoro.net/neurogram/

Interpretable Compositional Networks

We take 2 ideas from CPPN to make ICN
I Neurons can contain one operation among many possible ones,
I ICN deals with an input space by taking one by one all elements.

Input space of one given constraint

Florian Richoux Learning Error Functions through ICN 15 / 27

Interpretable Compositional Networks

We take 2 ideas from CPPN to make ICN
I Neurons can contain one operation among many possible ones,
I ICN deals with an input space by taking one by one all elements.

Input space of one given constraint

Florian Richoux Learning Error Functions through ICN 15 / 27

Interpretable Compositional Networks

We take 2 ideas from CPPN to make ICN
I Neurons can contain one operation among many possible ones,
I ICN deals with an input space by taking one by one all elements.

Input space of one given constraint

Florian Richoux Learning Error Functions through ICN 15 / 27

Interpretable Compositional Networks

Our ICN architecture

I Identity
I Number of elements on the right equals to y
I Max(0, y - param)

I
...

I pairwise addition
I pairwise multiplication

I Sum of elements
I Number of elements greater than 0

I Identity
I | input - param |
I Euclidian division of the input by the domain size

I
...

Florian Richoux Learning Error Functions through ICN 16 / 27

Interpretable Compositional Networks

Our ICN architecture

I Identity
I Number of elements on the right equals to y
I Max(0, y - param)

I
...

I pairwise addition
I pairwise multiplication

I Sum of elements
I Number of elements greater than 0

I Identity
I | input - param |
I Euclidian division of the input by the domain size

I
...

Florian Richoux Learning Error Functions through ICN 16 / 27

Interpretable Compositional Networks

Our ICN architecture

I Identity
I Number of elements on the right equals to y
I Max(0, y - param)

I
...

I pairwise addition
I pairwise multiplication

I Sum of elements
I Number of elements greater than 0

I Identity
I | input - param |
I Euclidian division of the input by the domain size

I
...

Florian Richoux Learning Error Functions through ICN 16 / 27

Interpretable Compositional Networks

Our ICN architecture

I Identity
I Number of elements on the right equals to y
I Max(0, y - param)

I
...

I pairwise addition
I pairwise multiplication

I Sum of elements
I Number of elements greater than 0

I Identity
I | input - param |
I Euclidian division of the input by the domain size

I
...

Florian Richoux Learning Error Functions through ICN 16 / 27

Interpretable Compositional Networks

Our ICN architecture

I Identity
I Number of elements on the right equals to y
I Max(0, y - param)

I
...

I pairwise addition
I pairwise multiplication

I Sum of elements
I Number of elements greater than 0

I Identity
I | input - param |
I Euclidian division of the input by the domain size

I
...

Florian Richoux Learning Error Functions through ICN 16 / 27

Interpretable Compositional Networks

Our ICN architecture

I Identity
I Number of elements on the right equals to y
I Max(0, y - param)

I
...

I pairwise addition
I pairwise multiplication

I Sum of elements
I Number of elements greater than 0

I Identity
I | input - param |
I Euclidian division of the input by the domain size

I
...

Florian Richoux Learning Error Functions through ICN 16 / 27

Learn ICN with Genetic Algorithms

Individual modeling

Vector of 29 bits:
one bit for each operations.

Initialization
Draw 100 individuals randomly.

Evaluation

Minimize the loss function L(θc, hc).

Replacement

Elitism merge and deterministic
tournament to keep 100 individuals.

Stop criteria

Reaching 400 generations.

Selection
Tournament between 2 individuals.

Variation
One-point crossovers.
One-flip mutations.

Florian Richoux Learning Error Functions through ICN 17 / 27

Learn ICN with Genetic Algorithms

Individual modeling

Vector of 29 bits:
one bit for each operations.

Initialization
Draw 100 individuals randomly.

Evaluation

Minimize the loss function L(θc, hc).

Replacement

Elitism merge and deterministic
tournament to keep 100 individuals.

Stop criteria

Reaching 400 generations.

Selection
Tournament between 2 individuals.

Variation
One-point crossovers.
One-flip mutations.

Florian Richoux Learning Error Functions through ICN 17 / 27

Learn ICN with Genetic Algorithms

Individual modeling

Vector of 29 bits:
one bit for each operations.

Initialization
Draw 100 individuals randomly.

Evaluation

Minimize the loss function L(θc, hc).

Replacement

Elitism merge and deterministic
tournament to keep 100 individuals.

Stop criteria

Reaching 400 generations.

Selection
Tournament between 2 individuals.

Variation
One-point crossovers.
One-flip mutations.

Florian Richoux Learning Error Functions through ICN 17 / 27

Learn ICN with Genetic Algorithms

Individual modeling

Vector of 29 bits:
one bit for each operations.

Initialization
Draw 100 individuals randomly.

Evaluation

Minimize the loss function L(θc, hc).

Replacement

Elitism merge and deterministic
tournament to keep 100 individuals.

Stop criteria

Reaching 400 generations.

Selection
Tournament between 2 individuals.

Variation
One-point crossovers.
One-flip mutations.

Florian Richoux Learning Error Functions through ICN 17 / 27

Learn ICN with Genetic Algorithms

Individual modeling

Vector of 29 bits:
one bit for each operations.

Initialization
Draw 100 individuals randomly.

Evaluation

Minimize the loss function L(θc, hc).

Replacement

Elitism merge and deterministic
tournament to keep 100 individuals.

Stop criteria

Reaching 400 generations.

Selection
Tournament between 2 individuals.

Variation
One-point crossovers.
One-flip mutations.

Florian Richoux Learning Error Functions through ICN 17 / 27

Learn ICN with Genetic Algorithms

Individual modeling

Vector of 29 bits:
one bit for each operations.

Initialization
Draw 100 individuals randomly.

Evaluation

Minimize the loss function L(θc, hc).

Replacement

Elitism merge and deterministic
tournament to keep 100 individuals.

Stop criteria

Reaching 400 generations.

Selection
Tournament between 2 individuals.

Variation
One-point crossovers.
One-flip mutations.

Florian Richoux Learning Error Functions through ICN 17 / 27

Learn ICN with Genetic Algorithms

Individual modeling

Vector of 29 bits:
one bit for each operations.

Initialization
Draw 100 individuals randomly.

Evaluation

Minimize the loss function L(θc, hc).

Replacement

Elitism merge and deterministic
tournament to keep 100 individuals.

Stop criteria

Reaching 400 generations.

Selection
Tournament between 2 individuals.

Variation
One-point crossovers.
One-flip mutations.

Florian Richoux Learning Error Functions through ICN 17 / 27

Learn ICN with Genetic Algorithms

Individual modeling

Vector of 29 bits:
one bit for each operations.

Initialization
Draw 100 individuals randomly.

Evaluation

Minimize the loss function L(θc, hc).

Replacement

Elitism merge and deterministic
tournament to keep 100 individuals.

Stop criteria

Reaching 400 generations.

Selection
Tournament between 2 individuals.

Variation
One-point crossovers.
One-flip mutations.

Florian Richoux Learning Error Functions through ICN 17 / 27

Outline

1 Constraint Programming

2 Motivation

3 Learning Error Functions

4 Experimental results

5 Conclusion

Florian Richoux Learning Error Functions through ICN 18 / 27

Tested constraints

5 major constraints:
I All different: variables must all be assigned to different values.

I Ordered: assignment of n variables (x1, . . . , xn) must be ordered,
given a total order.

I Linear sum: equation x1 + x2 + . . .+ xn = p must hold.

I No overlap: variables represent tasks with a given length. A
variable’s value is its task starting time. No tasks must overlap.

I Minimum: the minimum value of an assignment must check a given
numerical condition.

Florian Richoux Learning Error Functions through ICN 19 / 27

Three experimental protocols

Exp. 1: Scaling

Question: Do error functions learned over small spaces scale?
I Learn error functions over small spaces (' 500 assignments),
I Test them over huge spaces (' 10200 assignments).

Exp. 2: Learning over incomplete spaces

Question: Can we learn efficient error function over incomplete spaces?
I Learning over 200 sampled assignments in large spaces (' 50.000),
I Test them over huge spaces (' 10200 assignments).

Exp. 3: Solving Sudoku with learned error functions

Question: Can a learned error function be used to solve an actual
problem?
I Solve Sudoku with and without error functions.

Florian Richoux Learning Error Functions through ICN 20 / 27

Three experimental protocols

Exp. 1: Scaling

Question: Do error functions learned over small spaces scale?
I Learn error functions over small spaces (' 500 assignments),
I Test them over huge spaces (' 10200 assignments).

Exp. 2: Learning over incomplete spaces

Question: Can we learn efficient error function over incomplete spaces?
I Learning over 200 sampled assignments in large spaces (' 50.000),
I Test them over huge spaces (' 10200 assignments).

Exp. 3: Solving Sudoku with learned error functions

Question: Can a learned error function be used to solve an actual
problem?
I Solve Sudoku with and without error functions.

Florian Richoux Learning Error Functions through ICN 20 / 27

Three experimental protocols

Exp. 1: Scaling

Question: Do error functions learned over small spaces scale?
I Learn error functions over small spaces (' 500 assignments),
I Test them over huge spaces (' 10200 assignments).

Exp. 2: Learning over incomplete spaces

Question: Can we learn efficient error function over incomplete spaces?
I Learning over 200 sampled assignments in large spaces (' 50.000),
I Test them over huge spaces (' 10200 assignments).

Exp. 3: Solving Sudoku with learned error functions

Question: Can a learned error function be used to solve an actual
problem?
I Solve Sudoku with and without error functions.

Florian Richoux Learning Error Functions through ICN 20 / 27

Experimental result 1: Scaling

Constraints median mean most freq.
all different 0 0.03 0 (97)
ordered 0.08 0.08 0.08 (100)
linear sum 0.01 0.05 0.01 (74)
no overlap 0.14 0.19 0.11 (50)
minimum 0 0.04 0 (88)

Table: Training error over small spaces (500 assignments).

all_diff ord lin_sum no_ol min
0 1.27 0.03 2.68 0

Table: Mean test error over 20,000 assignments in huge spaces.

Test spaces of size 10200, but. . .
I Not easy to compute the Hamming error for Ordered and NoOverlap.
I Estimation of their Hamming error over spaces of size ' 1015.

Florian Richoux Learning Error Functions through ICN 21 / 27

Experimental result 1: Scaling

Constraints median mean most freq.
all different 0 0.03 0 (97)
ordered 0.08 0.08 0.08 (100)
linear sum 0.01 0.05 0.01 (74)
no overlap 0.14 0.19 0.11 (50)
minimum 0 0.04 0 (88)

Table: Training error over small spaces (500 assignments).

all_diff ord lin_sum no_ol min
0 1.27 0.03 2.68 0

Table: Mean test error over 20,000 assignments in huge spaces.

Test spaces of size 10200, but. . .
I Not easy to compute the Hamming error for Ordered and NoOverlap.
I Estimation of their Hamming error over spaces of size ' 1015.

Florian Richoux Learning Error Functions through ICN 21 / 27

Experimental result 2: Incomplete spaces

Constraints median mean most freq.
all different 0.44 0.44 0.44 (99)
ordered 0.44 0.46 0.44 (66)
linear sum 2.03 1.70 0.85 (37)
no overlap 2.33 2.39 2.29 (48)
minimum 0.59 0.59 0.59 (78)

Table: Training error over incomplete large spaces (' 50.000 assignments).

all_diff ord lin_sum no_ol min
0 1.80 0.03 2.02 0

Table: Mean test error over 20,000 assignments in huge spaces.

Florian Richoux Learning Error Functions through ICN 22 / 27

Experimental result 3: Sudoku

Error Function mean median std dev min max
no error functions 1044 764 727 250 3546

learned 383 331 268 57 1812
hard-coded 175 145 107 46 662
hand-crafted 149 125 107 26 608

Table: Run-times in milliseconds over 100 runs to solve Sudoku.

Rows in this table
1 No error functions (pure CN),
2 The most frequently learned error function for All different in

Experiment 1 run through the ICN,
3 The same function but hard-coded in C++,
4 A hand-crafted error function (Petit et. al 2001).

Florian Richoux Learning Error Functions through ICN 23 / 27

Outline

1 Constraint Programming

2 Motivation

3 Learning Error Functions

4 Experimental results

5 Conclusion

Florian Richoux Learning Error Functions through ICN 24 / 27

Conclusion

Conclusion
I EFN power with CN model simplicity.
I Interpretable model.
I Scale!
I Can learn over incomplete spaces.
I No cherry-picked operations.
I Use it fully automatically or as a decision support system.

Perspectives
I Need more diverse and expressive operations for very combinatorial

constraints (Ordered, No overlap).

I Reinforcement learning to find error functions adapted to the solver.

Florian Richoux Learning Error Functions through ICN 25 / 27

Conclusion

Conclusion
I EFN power with CN model simplicity.
I Interpretable model.
I Scale!
I Can learn over incomplete spaces.
I No cherry-picked operations.
I Use it fully automatically or as a decision support system.

Perspectives
I Need more diverse and expressive operations for very combinatorial

constraints (Ordered, No overlap).

I Reinforcement learning to find error functions adapted to the solver.

Florian Richoux Learning Error Functions through ICN 25 / 27

Paper and source code

Get the paper! Get the code!

arxiv.org/abs/2002.09811 github.com/richoux/LearningCostFunctions

Florian Richoux Learning Error Functions through ICN 26 / 27

https://arxiv.org/abs/2002.09811
https://github.com/richoux/LearningErrorFunctions

Questions?

�orian.richoux@polytechnique.edu

@FloRicx

Florian Richoux Learning Error Functions through ICN 27 / 27

mailto:florian.richoux@polytechnique.edu
https://twitter.com/FloRicx

	Constraint Programming
	Motivation
	Learning Error Functions
	Experimental results
	Conclusion

