Extremes of Gaussian RF's, Asymptotic Constants, Spectral Tail RF's, Tail Measures & Cluster RF's

Enkelejd Hashorva University of Lausanne

Saint-Étienne, École des Mines, Oct 9/2024

HEC Lausanne

Outline

- Extremes of \mathbb{R}^d -valued GP's
- Asymptotic constants
- Shift-invariant classes of rf's
- Spectral tail rf's
- Cluster rf's
- Applications

Extremal behaviour of Gaussian RV's

Consider $\mathbf{X} = (X_1, \ldots, X_d) \sim N(\mathbf{0}, \Sigma)$ with Σ non-singular.

Q1:
$$
\mathbb{P}\{X_i > b_i u, \forall i = 1, ..., d\}
$$
 for u large?

A1: Solve first the quadratic optimisation problem

$$
\Pi_{\Sigma}(\pmb{b}): \qquad \text{minimise}: \pmb{x}^{\top} \Sigma^{-1} \pmb{x}, \quad \pmb{x} \geq \pmb{b} \qquad \qquad (1)
$$

$$
\ln \mathbb{P} \{ \boldsymbol{X} > \boldsymbol{b} u \} \sim - u^2 \frac{\tau}{2}, \quad \tau = \inf_{\boldsymbol{x} \geq \boldsymbol{b}} \boldsymbol{x}^\top \Sigma^{-1} \boldsymbol{x} \tag{2}
$$

Example: [2-dim case $\mathbf{b} = (b, b)^\top, b > 0$] $\tau = \boldsymbol{b}^{\top} \Sigma^{-1} \boldsymbol{b}$, however for general \boldsymbol{b}

$$
argmin_{\boldsymbol{x} \geq \boldsymbol{b}} \boldsymbol{x}^{\top} \Sigma^{-1} \boldsymbol{x} =: \widetilde{\boldsymbol{b}} \neq \boldsymbol{b}
$$

Exact asymptotics: Loss of dimensions phenomenon

The exact asymptotics is given for $u \to \infty$ by (see e.g., [\[1\]](#page-36-0))

$$
\mathbb{P}\left\{\boldsymbol{X}>\boldsymbol{b} u\right\}\sim\mathbf{c}\mathbb{P}\left\{\boldsymbol{X}_{I}>\boldsymbol{b}_{I} u\right\}\sim c_{\star} u^{-|I|}\varphi(\boldsymbol{b} u)
$$

for some unique index set $I \subset \{1, \ldots, d\}$ and φ the pdf of \boldsymbol{X}_I .

Example: $[(X_1, X_2)$ with $N(0, 1)$ marginals and $\rho \in (-1, 1)$ If $\bm{b}=(1,b)^\top$ with $b\leq\rho,$ then $I=\{1\}$ and

$$
\mathbb{P}\left\{X_1 > u, X_2 > bu\right\} \sim c \mathbb{P}\left\{X_1 > u\right\}
$$

with $c = 1/2$ when $b = \rho$ and $c = 1$, otherwise.

 (3)

Extremes of stationary GP's

 $X(t)$, $t \geq 0$ is a centered, stationary GP with continuous paths, unit variance & correlation $r(t) < 1, \forall t > 0$ satisfying

$$
1 - r(t) \sim |t|^{\alpha}, \quad t \to 0, \quad \alpha \in (0, 2]
$$

Pickands '69 [\[2\]](#page-36-1) showed that

$$
\mathbb{P}\left\{\sup_{t\in[0,T]}X(t)>u\right\}\sim\mathcal{H}Tu^{2/\alpha}\mathbb{P}\left\{X(0)>u\right\}\tag{4}
$$

where H is the Pickands constant.

 \sim means asymp equivalence.

Extremes of vector-valued GP's

 $\boldsymbol{X}(t) = (X_1(t), \dots, X_d(t))^\top, \, t \in [0, \, T]$ is a centered <code>GP</code> with continuous paths

$$
\boldsymbol{b} = (b_1, \ldots, b_d)^\top \in \mathbb{R}^d \setminus (-\infty, 0]^d
$$

Q2: How to approximate

$$
\mathbb{P}\left\{\exists t \in [0, T]: \ \mathbf{X}(t) > \mathbf{b}u\right\}
$$

as $u \rightarrow \infty$? In our notation

$$
\boldsymbol{x} > \boldsymbol{y} \Longleftrightarrow x_i > y_i, \quad 1 \leq i \leq d
$$

log-asymptotics

Define $\Sigma(t) = \mathbb{E}\{\boldsymbol{X}(t) \boldsymbol{X}(t)^\top\}$ and determine

 $\tau = \inf_{t \in [0,T]} \min_{\boldsymbol{x} \geq \boldsymbol{b}} \boldsymbol{x}^\top (\Sigma(t))^{-1} \boldsymbol{x}$ (5)

then similarly to (6) (Debicki et al. '10, [\[3\]](#page-36-2), Debicki et al. '24+)

$$
\ln \mathbb{P} \{ \exists t \in [0, T] : \ \mathbf{X}(t) > \mathbf{b} u \} \sim - u^2 \frac{\tau}{2}
$$
 (6)

Recent results dealing with exact asymptotics in [\[1,](#page-36-0) [4,](#page-36-3) [5\]](#page-36-4).

Pickands constants

Given the fractional Brownian motion $B(t)$, $t \in \mathbb{R}$ with

$$
Cov(B(s), B(t)) = |t|^{\alpha} + |s|^{\alpha} - |t - s|^{\alpha}, \quad \alpha \in (0, 2]
$$

define with $\widetilde{B}(t) = B(t) - Var(B(t))/2$ the Pickands constants

$$
\mathcal{H}^{\delta} = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left\{ \sup_{t \in [0,T] \cap \delta \mathbb{Z}} e^{\widetilde{B}(t)} \right\}
$$

where $\delta \mathbb{Z} = \mathbb{R}$ if $\delta = 0$.

Pickands '69 proved $\mathcal{H}^{\delta} \in (0, \infty)$ and

$$
\mathcal{H} = \lim_{\delta \downarrow 0} \mathcal{H}^{\delta} \tag{7}
$$

Exact values & simulations

If $\alpha = 2$ in view of Debicki & H. '17, [\[6\]](#page-36-5)

$$
\mathcal{H}^{\delta} = \frac{1}{\delta} [\Phi(\delta/\sqrt{2}) - \Phi(-\delta/\sqrt{2})]
$$

with Φ the standard Gaussian df. Letting $\delta \rightarrow 0$ yields

$$
\mathcal{H} = \sqrt{2}\Phi'(0) = 1/\sqrt{\pi}
$$

If $\alpha = 1$, the case of Brownian motion, $\mathcal{H} = 1$.

Q3: How to calculate/simulate those constants?

Berman representation

A3: For simulation a formula in terms of expectations is useful. In view of Berman '92, [\[7\]](#page-36-6)

$$
\mathcal{H} = \mathbb{E}\left\{\frac{1}{\int_{t \in \mathbb{R}} \mathbb{I}\{\widetilde{B}(t) + E > 0\} dt}\right\} \tag{8}
$$

with E a unit exponential rv independent of \overline{B} .

Dieker-Yakir representation

Motivated by previous works of Siegmund and Yakir, Dieker & Yakir '14, [\[8\]](#page-36-7) showed that

$$
\mathcal{H} = \mathbb{E}\left\{\frac{\sup_{t \in \mathbb{R}} e^{\widetilde{B}(t)}}{\int_{t \in \mathbb{R}} e^{\widetilde{B}(t)}} dt\right\}
$$
(9)

Q3': What is the meaning of those representations?

Brown-Resnick max-stable rf's

With E_k 's iid unit exponential rv's define

$$
X(t) = \max_{i \ge 1} \frac{Z_i(t)}{\sum_{k=1}^i E_k}, \quad t \in \mathcal{T} = \mathbb{R}^l
$$
 (10)

 Z_i 's independent copies of the representor Z given by

$$
Z(t) = e^{\widetilde{B}(t)}, \quad t \in \mathcal{T}, \quad \widetilde{B}(t) = B(t) - Var(B(t))/2
$$

Stationarity of X is shown for:

◇ $B(t), t \in \mathbb{R}$ is a Brownian motion, Brown & Resnick '77, [\[9\]](#page-36-8)

◯ $B(t) = tW$, $t \in \mathbb{R}$ with W an $N(0, 1)$ rv, Gale '80, [\[10\]](#page-37-0)

 \Diamond B centered GRF's with stationary increments, De Haan et. al. '09, [\[11\]](#page-37-1).

General max-stable rf 's

Consider a stochastically continuous max-stable rf $X(t)$, $t \in \mathcal{T}$ with representator $Z(t)$, $t \in \mathcal{T}$ satisfying for all compact $K \subset \mathcal{T}$

$$
\mathbb{E}\left\{\sup_{t\in K} Z(t)\right\} < \infty, \quad \mathbb{P}\left\{\sup_{t\in \mathcal{T}} Z(t) > 0\right\} = 1 \tag{11}
$$

Suppose that X has unit Fréchet marginal's $e^{-1/x}, x > 0$, i.e.,

$$
\mathbb{E}\left\{Z(t)\right\} = 1, \quad \forall t \in \mathcal{T}
$$

If x_i 's are positive and t_i 's in $\mathcal T$

$$
\mathbb{P}\left\{X(t_1) \le x_1, \ldots, X(t_k) \le x_k\right\} = e^{-\mathbb{E}\left\{\max_{1 \le i \le k} Z_i(t_i)/x_i\right\}} \quad (12)
$$

Tilt-shift formula

From (12), if
$$
BhZ(t) = Z(t - h), \quad t \in \mathcal{T}
$$

is a representor of X for all $h \in \mathcal{T}$, then X is stationary. As shown in H. '18, [\[12\]](#page-37-2) stationarity of X is equivalent with

$$
\mathbb{E}\left\{Z(h)H(Z)\right\} = \mathbb{E}\left\{Z(0)H(B^{h}Z)\right\}, \quad \forall h \in \mathcal{T} \qquad (13)
$$

for all $H : D(\mathcal{T}, \mathbb{R}) \mapsto [0, \infty]$ measurable 0-homogeneous maps.

Remark: Z is non-negative. We allow later for general Z .

Tail measures

Given the **jointly measurable** rf $Z(t)$, $t \in \mathcal{T}$ define the tail measure introduced in (Owada & Samorodnitsky '12)

$$
\nu_Z[H] = \int_0^\infty \mathbb{E}\left\{H(r\cdot Z)\right\} r^{-2} dr
$$

for all $H : D(\mathcal{T}, \mathbb{R}) \mapsto [0, \infty]$ measurable, see also [\[13,](#page-37-3) [14\]](#page-37-4).

Properties of ν_z :

- ν_z is -1 -homogeneous
- ν_z is shift-invariant i.e.,

$$
\nu_Z = \nu_{B^hZ}, \quad \forall h \in \mathcal{T}
$$

 \iff Z satisfies tilt-shift formula [\(13\)](#page-13-0), details here [\[13,](#page-37-3) [15,](#page-37-5) [14\]](#page-37-4).

Regular variation of max-stable rf 's

The max-stable rf X with cadlag paths (Soulier '22, Bladt, H., Shevchenko '22, [\[15,](#page-37-5) [14\]](#page-37-4)) is regularly varying with tail measure ν _Z, i.e.,

$$
\lim_{u \to \infty} \frac{\mathbb{E}\left\{H(X/u)\right\}}{\mathbb{P}\left\{X(0) > u\right\}} = \nu_Z[H], \quad u \to \infty \tag{14}
$$

for all continuous bounded $H : D(\mathcal{T}, \mathbb{R}) \mapsto \mathbb{R}$ separated by the null map, i.e.,

$$
\sup_{t \in K_H} |f(t)| < \varepsilon_H, \quad \forall f : H(f) = 0
$$

for some compact $K_H \subset \mathcal{T}$ and ε_H positive.

Tail & spectral tail rf 's

When the max-stable rf X with cadlag paths is stationary, then we have (Soulier '22, Bladt, H., & Shevchenko '22)

$$
\lim_{u \to \infty} \frac{\mathbb{E}\left\{H(X/u)\mathbb{I}(X(0) > u)\right\}}{\mathbb{P}\left\{X(0) > u\right\}} = \mathbb{E}\left\{H(Y)\right\}, \quad u \to \infty
$$

for all continuous bounded $H : D(\mathcal{T}, \mathbb{R}) \mapsto \mathbb{R}$ separated by the null map.

- Y is referred to as the tail rf of X
- \bullet $\Theta = Y/Y(0)$ is referred to as the spectral tail rf of X
- $Y = R\Theta$ with R an 1-Pareto rv independent of Θ

Key relationships & questions

In more general settings, how to define and relate

 X, Z, ν_Z, Y, Θ

• max-stability

•

- shift-invariance
- regular variation for defining Y can be dropped, see below
- Pickands & other constants?
- Applications?

Definition of $\mathcal{H}^{\mathcal{L}}_Z$

Let $Z(t), t\in\mathcal{T}$ with $\mathcal{T}=\mathbb{R}^l$ be jointly measurable and separable. Suppose that for all compact $K \subset \mathcal{T}$ [\(11\)](#page-12-1) holds, i.e.,

$$
\mathbb{E}\left\{\sup_{t\in K}|Z(t)|\right\}<\infty,\quad \mathbb{P}\left\{\sup_{t\in\mathcal{T}}|Z(t)|>0\right\}=1
$$

Given an additive subgroup $\mathcal L$ of $\mathcal T$ define **PiC's** by

$$
\mathcal{H}_Z^{\mathcal{L}} = \lim_{T \to \infty} \mathcal{H}_Z^{\mathcal{L}}[T], \quad \mathcal{H}_Z^{\mathcal{L}}[T] = \frac{1}{T^l} \mathbb{E} \left\{ \sup_{t \in [0,T]^l \cap \mathcal{L}} |Z(t)| \right\} \tag{15}
$$

Of interest: $\mathcal{L} = \mathcal{T}$ or \mathcal{L} is a full rank lattice on \mathbb{R}^l .

Relations with max-stable stationary X

Lem 1: If Z satisfies the tilt-shift formula

$$
\mathbb{E}\left\{|Z(h)|H(Z)\right\} = \mathbb{E}\left\{|Z(0)|H(B^{h}Z)\right\}, \quad \forall h \in \mathcal{T} \quad \textbf{(16)}
$$

then the max-stable **stationary** X with representor $|Z|$ has extremal index $\mathcal{H}^{\mathcal{L}}_Z$, i.e.,

$$
\lim_{T \to \infty} \mathbb{P}\left\{\sup_{t \in \delta \cap \mathbb{Z}^l \cap [0,T]^l} X(t) \leq Tx\right\} = e^{-\mathcal{H}_Z^{\mathcal{L}}/x}, \quad x > 0
$$

with

$$
\mathcal{H}_Z^{\mathcal{L}} \in [0, \infty) \tag{17}
$$

1-Homogeneous shift-invariant classes of rf's

Consider the class $\mathcal{K}[Z]$ of all jointly measurable rf's $Z(t)$, $t \in \mathcal{T}$ defined on some complete $(\Omega, \mathcal{F}, \mathbb{P})$ such that [\(11\)](#page-12-1) holds, i.e.,

$$
\mathbb{P}\left\{\sup_{t\in\mathcal{T}}|\widetilde{Z}(t)|>0\right\}=1,\quad \mathbb{E}\left\{\sup_{t\in K}|\widetilde{Z}(t)|\right\}<\infty
$$

for all compact $K \subset \mathcal{T}$ and $\widetilde{Z} \in \mathcal{K}[Z]$, see [\[16,](#page-37-6) [17\]](#page-37-7). Suppose the tilt-shift formula [\(13\)](#page-13-0) is valid and further

$$
\mathbb{E}\left\{|Z(h)|H(Z)\right\} = \mathbb{E}\left\{|\widetilde{Z}(h)|H(\widetilde{Z})\right\}, \quad \forall h \in \mathcal{T}, \widetilde{Z} \in \mathcal{K}[Z] \tag{18}
$$

for all $H : D(\mathcal{T}, \mathbb{R}) \mapsto [0, \infty]$ measurable 0-homogeneous maps.

Stationary Z

When Z is a stationary rf, the tilt-shift formula [\(16\)](#page-19-0) is valid, so we can define $\mathcal{K}[Z]$. Moreover, for such Z we have

$$
{\cal H}^{\cal L}_Z=0
$$

Not any Z defines a $\mathcal{K}[Z]$; non-stationary Z 's are of interest.

Refinements of tilt-shift formula

Thm 1: For all $\widetilde{Z} \in \mathcal{K}[Z]$ we have

$$
\mathbb{E}\left\{H(Z)\right\}=\mathbb{E}\left\{H(B^{h}\widetilde{Z})\right\},\quad\forall h\in\mathcal{T}
$$

where $H : D(\mathcal{T}, \mathbb{R}) \mapsto [0, \infty]$ is 1-homogeneous including

$$
I_{\mathcal{T}}:f\mapsto \int_{\mathcal{T}}\lvert f(t)\rvert\lambda(dt)
$$

Moreover, there \exists a $\widetilde{Z} \in \mathcal{K}[Z]$ stochastically continuous satisfying

$$
\mathbb{P}\left\{I_{\mathcal{T}}(\widetilde{Z})>0\right\}=1\tag{19}
$$

The spectral tail rf Θ

Given a $\mathcal{K}[Z]$ determine Θ as the rf $Z/|Z(0)|$ under

$$
\widehat{\mathbb{P}}(A) = \frac{1}{\mathbb{E}\left\{Z(0)\right\}} \mathbb{E}\left\{Z\mathbb{I}(A)\right\}, \quad \forall A \in \mathscr{F}
$$

Properties of Θ

• [\(13\)](#page-13-0) is equivalent with: $\forall \Gamma \in \mathcal{H}_1$ including $I_{\mathcal{T}}$

$$
\mathbb{E}\left\{|\Theta(h)|\Gamma(\Theta)\right\} = \mathbb{E}\left\{\mathbb{I}(|\Theta(-h)| \neq 0)\Gamma(B^h\Theta)\right\}, \quad \forall h \in \mathcal{T}
$$

$$
\bullet~~\mathbb{P}\left\{|\Theta(0)|=1\right\}=1
$$

• A third property follows from $\mathbb{E} \left\{ \sup_{t \in K} |Z(t)| \right\} < \infty$

Given Θ satisfying the above properties, a shift-invariant $\mathcal{K}[Z]$ can be constructed [\[18,](#page-37-8) [19,](#page-38-0) [16\]](#page-37-6).

The tail rf Y

We can define the tail rf Y by

 $Y = R\Theta$

with R a 1-Pareto rv independent of Θ . We can choose Θ to be stochastically continuous. This implies

- $\mathbb{P}\left\{I_{\mathcal{T}}(\Theta) > 0\right\} = 1$
- Y is stochastically continuous
- $S_{\mathcal{T}}(Y) = \int_{t \in \mathcal{T}} \mathbb{I}(|Y(t)| > 1) \lambda(dt) > 0$ almost surely

Properties of Y

• \forall measurable Γ including $I_{\mathcal{T}}$, $S_{\mathcal{T}}$, see [\[13,](#page-37-3) [14,](#page-37-4) [16,](#page-37-6) [20\]](#page-38-1)

$$
\mathbb{E}\left\{\Gamma(xB^hY)\right\}=x\mathbb{E}\left\{\Gamma(Y)\mathbb{I}(|xB^{-h}Y/x|>1)\right\}, \forall h\in\mathcal{T}, x>0
$$

- $|Y(0)|$ is an 1-Pareto rv
- For all compact $K \subset \mathcal{T}$ with positive Lebesgue measure

$$
\int_{t \in K} \mathbb{E}\left\{\frac{1}{\int_{s \in K} \mathbb{I}(|Y(s-t)| > 1) \lambda(ds)}\right\} \lambda(dt) < \infty \quad (20)
$$

Conversely, given Y satisfying the above properties, a shift-invariant $\mathcal{K}[Z]$ can be constructed (Kulik & Soulier '20, Soulier '22, H. '24).

Cluster RF's Q

Let $Q(t)$, $t \in \mathcal{T}$ be jointly measurable and separable. Suppose that for all compact $K \subset \mathcal{T}$

$$
\mathbb{P}\left\{\sup_{t\in\mathcal{T}}|Q(t)|>0\right\}=1,\quad\int_{\mathcal{T}}\mathbb{E}\left\{\sup_{t\in K}|Q(v-t)|\right\}\lambda(dv)<\infty\tag{21}
$$

If N is independent of Q with density $p(t) > 0, t \in \mathcal{T}$, then

$$
Z(t) = \frac{B^N Q(t)}{p(N)}, \quad t \in \mathcal{T}
$$

defines a shift-invariant $\mathcal{K}[Z]$.

Q4: Given $\mathcal{K}[Z]$ does a corresponding Q exist? If yes, how to construct Q ?

Example: Brown-Resnick $\mathcal{K}[Z]$

Consider for W a centered GRF with stationary increments

$$
Z(t) = e^{W(t) - Var(W(t))/2}, \quad t \in \mathcal{T}
$$

Z defines a shift-invariant $\mathcal{K}[Z]$ and a shift-invariant ν_Z . For this case

$$
\Theta(t) = e^{W(t) - W(0) - \gamma(t)/2}, \quad t \in \mathcal{T}
$$

with variogram $\gamma(t) = Var(W(t) - W(0))$, and

$$
Y(t) = e^{E+W(t)-W(0)-\gamma(t)/2}, \quad t \in \mathcal{T}
$$

with E a unit exponential rv independent of W .

Existence of Q

Lem 2: Given a shift-invariant $\mathcal{K}[Z]$, then a stochastically continuous cluster rf Q exists iff almost surely

•
$$
I_{\mathcal{T}}(Z) = \int_{\mathcal{T}} |Z(t)| \lambda(dt) < \infty
$$

- $I_{\mathcal{T}}(\Theta) < \infty$
- $S_{\mathcal{T}}(Y) = \int_{\mathcal{T}} \mathbb{I}(|Y(t)| > 1) \lambda(dt) < \infty$

or one of the above holds with ${\mathcal T}$ substituted ${\mathbb Z}^l$ and λ substituted by the counting measure on $\mathbb{Z}^l.$

Constructions of different Q's

Thm 2: If
$$
\mathbb{P}\left\{\int_{\mathcal{T}}|Z(t)|\lambda(dt)<\infty\right\}=1
$$

then stochastically continuous Q can be constructed. We have

$$
Q = c\Theta, \quad c^{-1} = I_{\mathcal{T}}(\Theta)
$$

$$
Q = cY, \quad c^{-1} = \sup_{t \in \mathcal{T}} |Y(t)| S_{\mathcal{T}}(Y)
$$

Remark: Other constructions possible by employing anchoring maps, [\[18,](#page-37-8) [15,](#page-37-5) [17\]](#page-37-7).

Generalised Picaknds constants

Lem 3: If $\mathcal{L} = \{Ax, x \in \mathbb{Z}^l\}$, where A is a $l \times l$ real, non-singular matrix or $\mathcal{L} = \mathcal{T}$ and $\mathcal{K}[Z]$ possesses a cluster rf Q , then

$$
\mathcal{H}_Z^{\mathcal{L}} = \frac{1}{\Delta(\mathcal{L})} \mathbb{E} \left\{ \sup_{t \in \mathcal{L}} |Q(t)| \right\}
$$

where $\Delta(\mathcal{L})$ is the volume of $\{Ax, x \in [0, 1)^l\}.$

Remark: a) New representations for B-R X follow. **b)** When $\mathcal{L} = \mathcal{T}$, then set $\Delta(\mathcal{L}) = 1$. c) More results in [\[18,](#page-37-8) [17\]](#page-37-7).

Rosiński representations (RR's)

If for $\mathcal{K}[Z]$ exists a cluster rf Q and Z is non-negative, then for the corresponding max-stable X we have a new representation for its fidi's. Namely, for x_i 's positive and t_i 's in $\mathcal T$

$$
\mathbb{P}\left\{X(t_i)\leq x_i, 1\leq i\leq k\right\} = e^{-\mathbb{E}\left\{\int_{\mathcal{T}} \max_{1\leq i\leq k} Q_i(t_i-s)/x_i\lambda(ds)\right\}} \tag{22}
$$

Remark: a) RR's also called M3 or moving maxima representation.

b) New Q 's lead to new RR 's

Shift-representations of tail measures

If ν _Z is a shift-invariant tail measure and Z has a cluster rf Q, then ν_Z can be defined as a mixture of ν_{BhQ} . Specifically, we have

$$
\nu_Z[H] = \int_{\mathcal{T}} \nu_{B^hQ}[H] \lambda(dh)
$$

with λ the Lebesgue measure.

Some properties of such tail measures can be explored in terms of Y or Θ and Q , [\[18,](#page-37-8) [15,](#page-37-5) [17\]](#page-37-7).

New self-similar covariance functions

Tail measures ν_Z appear in the limit of different functionals (Kulik & Soulier '20). Given a cluster rf Q with corresponding tail rf Y , under weak assumptions

$$
K(s,t) = s \int_{\mathcal{T}} \mathbb{P}\left\{|Y(h)| > t/s\right\} \lambda(dh), \quad 0 < s \le t \tag{23}
$$

defines a covariance kernel.

Extensions and further ideas is work in progress, $H. 25 +$.

Many thanks for your attention and interest!

- F.
- K. Debicki, E. Hashorva, and L. Wang, "Extremes of vector-valued Gaussian processes," Stochastic Process. Appl., vol. 130, no. 9, pp. 5802–5837, 2020.

J. Pickands, III, "Upcrossing probabilities for stationary Gaussian processes," Trans. Amer. Math. Soc., vol. 145, pp. 51–73, 1969.

K. Debicki, K. M. Kosiński, M. Mandjes, and T. Rolski, "Extremes of multidimensional Gaussian"
"And Alle Carella City Control of Alle And Alle Carel 2008, 2009, 2009 processes," Stochastic Process. Appl., vol. 120, no. 12, pp. 2289–2301, 2010.

P. Ievlev, "Extremes of locally-homogenous vector-valued Gaussian processes," Extremes, pp. 1–27, 2024.

ā.

P. Ievlev and K. Nikolai, "Extremes of vector-valued locally additive Gaussian fields with application to double crossing probabilities," arXiv preprint arXiv:2401.05527, 2024.

S. Berman, Sojourns and Extremes of Stochastic Processes.

The Wadsworth & Brooks/Cole Statistics/Probability Series, Pacific Grove, CA: Wadsworth & Brooks/Cole Advanced Books & Software, 1992.

A. B. Dieker and B. Yakir, "On asymptotic constants in the theory of extremes for Gaussian processes," Bernoulli, vol. 20, no. 3, pp. 1600–1619, 2014.

B. M. Brown and S. I. Resnick, "Extreme values of independent stochastic processes," J. Appl. Probab., vol. 14, pp. 732–739, 1977.

- ā.
- W. F. Eddy and J. D. Gale, "The convex hull of a spherically symmetric sample," Advances in Applied Probability, vol. 13, no. 4, pp. 751–763, 1981.

Z. Kabluchko, M. Schlather, and L. de Haan, "Stationary max-stable fields associated to negative definite functions," Ann. Probab., vol. 37, pp. 2042–2065, 2009.

E. Hashorva, "Representations of max-stable processes via exponential tilting," Stochastic Process. Appl., vol. 128, no. 9, pp. 2952–2978, 2018.

C. Dombry, E. Hashorva, and P. Soulier, "Tail measure and spectral tail process of regularly varying time series," Ann. Appl. Probab., vol. 28, no. 6, pp. 3884–3921, 2018.

M. Bladt, E. Hashorva, and G. Shevchenko, "Tail measures and regular variation," Electron. J. Probab., vol. 27, pp. Paper No. 64, 43, 2022.

P. Soulier, "The tail process and tail measure of continuous time regularly varying stochastic processes," Extremes, vol. 25, no. 1, pp. 107–173, 2022.

E. Hashorva, "Shift-invariant homogeneous classes of random fields," Journal of Mathematical Analysis and Applications, p. 128517, 2024.

E. Hashorva, "Cluster random fields and random-shift representations," arXiv preprint arXiv:2206.15064, submitted to J. Th. Prob., 2024+.

R. Kulik and P. Soulier, Heavy tailed time series. Springer, Cham, 2020.

F

F

E. Hashorva, "On extremal index of max-stable random fields," Lith. Math. J., vol. 61, no. 2, pp. 217–238, 2021.

H. Planinić and P. Soulier, "The tail process revisited," Extremes, vol. 21, no. 4, pp. 551–579, 2018.