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Extremal behaviour of Gaussian RV’s
Consider X = (X1, . . . , Xd) ∼ N(0,Σ) with Σ non-singular.
Q1: P {Xi > biu,∀ i = 1, . . . , d} for u large?
A1: Solve first the quadratic optimisation problem

ΠΣ(b) : minimise : x⊤Σ−1x, x ≥ b (1)

lnP {X > bu}∼ − u2
τ

2
, τ = inf

x≥b
x⊤Σ−1x (2)

Example: [2-dim case b = (b, b)⊤, b > 0]

τ = b⊤Σ−1b, however for general b

argminx≥bx
⊤Σ−1x =: b̃ ̸= b

Extremes of GP’s Constants PiC’s K[Z]’s Θ & Y Q’s Applications 3



Exact asymptotics: Loss of dimensions phenomenon

The exact asymptotics is given for u → ∞ by (see e.g., [1])

P {X > bu} ∼ cP {XI > bIu} ∼ c⋆u
−|I|φ(bu) (3)

for some unique index set I ⊂ {1, . . . , d} and φ the pdf of XI .

Example: [(X1, X2) with N(0, 1) marginals and ρ ∈ (−1, 1)]

If b = (1, b)⊤ with b ≤ ρ, then I = {1} and

P {X1 > u,X2 > bu}∼cP {X1 > u}

with c = 1/2 when b = ρ and c = 1, otherwise.
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Extremes of stationary GP’s

X(t), t ≥ 0 is a centered, stationary GP with continuous paths,
unit variance & correlation r(t) < 1,∀t > 0 satisfying

1− r(t)∼|t|α, t → 0, α ∈ (0, 2]

Pickands ’69 [2] showed that

P

{
sup

t∈[0,T ]
X(t) > u

}
∼ HTu2/αP {X(0) > u} (4)

where H is the Pickands constant,
∼ means asymp equivalence.
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Extremes of vector-valued GP’s

X(t) = (X1(t), . . . , Xd(t))
⊤, t ∈ [0, T ] is a centered GP with

continuous paths

b = (b1, . . . , bd)
⊤ ∈ Rd \ (−∞, 0]d

Q2: How to approximate

P {∃t ∈ [0, T ] : X(t) > bu}

as u → ∞?
In our notation

x > y ⇐⇒ xi > yi, 1 ≤ i ≤ d
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log-asymptotics

Define Σ(t) = E{X(t)X(t)⊤} and determine

τ = inf
t∈[0,T ]

min
x≥b

x⊤(Σ(t))−1x (5)

then similarly to (6) (Debicki et al. ’10, [3], Debicki et al. ’24+)

lnP {∃t ∈ [0, T ] : X(t) > bu}∼ − u2
τ

2
(6)

Recent results dealing with exact asymptotics in [1, 4, 5].
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Pickands constants
Given the fractional Brownian motion B(t), t ∈ R with

Cov(B(s), B(t)) = |t|α + |s|α − |t− s|α, α ∈ (0, 2]

define with B̃(t) = B(t)− V ar(B(t))/2 the Pickands constants

Hδ = lim
T→∞

1

T
E

{
sup

t∈[0,T ]∩δZ
eB̃(t)

}

where δZ =: R if δ = 0.

Pickands ’69 proved Hδ ∈ (0,∞) and

H = lim
δ↓0

Hδ (7)
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Exact values & simulations

If α = 2 in view of Debicki & H. ’17, [6]

Hδ =
1

δ
[Φ(δ/

√
2)− Φ(−δ/

√
2)]

with Φ the standard Gaussian df.
Letting δ → 0 yields

H =
√
2Φ′(0) = 1/

√
π

If α = 1, the case of Brownian motion, H = 1.

Q3: How to calculate/simulate those constants?
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Berman representation

A3: For simulation a formula in terms of expectations is useful.
In view of Berman ’92, [7]

H = E

{
1∫

t∈R I{B̃(t) + E> 0}dt

}
(8)

with E a unit exponential rv independent of B̃.
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Dieker-Yakir representation

Motivated by previous works of Siegmund and Yakir,
Dieker & Yakir ’14, [8] showed that

H = E

{
supt∈R eB̃(t)∫

t∈R eB̃(t)
dt

}
(9)

Q3’: What is the meaning of those representations?
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Brown-Resnick max-stable rf’s
With Ek’s iid unit exponential rv’s define

X(t) = max
i≥1

Zi(t)∑i
k=1Ek

, t ∈ T = Rl (10)

Zi’s independent copies of the representor Z given by

Z(t) = eB̃(t), t ∈ T , B̃(t) = B(t)−V ar(B(t))/2

Stationarity of X is shown for:

♢ B(t), t ∈ R is a Brownian motion, Brown & Resnick ’77, [9]

♢ B(t) = tW, t ∈ R with W an N(0, 1) rv, Gale ’80, [10]

♢ B centered GRF’s with stationary increments, De Haan et. al.
’09, [11].
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General max-stable rf’s
Consider a stochastically continuous max-stable rf X(t), t ∈ T
with representator Z(t), t ∈ T satisfying for all compact K ⊂ T

E
{
sup
t∈K

Z(t)

}
< ∞, P

{
sup
t∈T

Z(t) > 0

}
= 1 (11)

Suppose that X has unit Fréchet marginal’s e−1/x, x > 0, i.e.,

E {Z(t)} = 1, ∀t ∈ T

If xi’s are positive and ti’s in T

P {X(t1) ≤ x1, . . . , X(tk) ≤ xk} = e−E{max1≤i≤k Zi(ti)/xi} (12)
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Tilt-shift formula

From (12), if
BhZ(t) = Z(t− h), t ∈ T

is a representor of X for all h ∈ T , then X is stationary.
As shown in H. ’18, [12] stationarity of X is equivalent with

E {Z(h)H(Z)} = E
{
Z(0)H(BhZ)

}
, ∀h ∈ T (13)

for all H : D(T ,R) 7→ [0,∞] measurable 0-homogeneous maps.

Remark: Z is non-negative. We allow later for general Z.
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Tail measures
Given the jointly measurable rf Z(t), t ∈ T define
the tail measure introduced in (Owada & Samorodnitsky ’12)

νZ [H] =

∫ ∞

0
E {H(r · Z)} r−2dr

for all H : D(T ,R) 7→ [0,∞] measurable, see also [13, 14].

Properties of νZ :

• νZ is −1-homogeneous

• νZ is shift-invariant i.e.,

νZ = νBhZ , ∀h ∈ T

⇐⇒ Z satisfies tilt-shift formula (13), details here
[13, 15, 14].
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Regular variation of max-stable rf’s

The max-stable rf X with cadlag paths (Soulier ’22, Bladt, H.,
Shevchenko ’22, [15, 14]) is regularly varying with tail measure
νZ , i.e.,

lim
u→∞

E {H(X/u)}
P {X(0) > u}

= νZ [H], u → ∞ (14)

for all continuous bounded H : D(T ,R) 7→ R
separated by the null map, i.e.,

sup
t∈KH

|f(t)| < εH , ∀f : H(f) = 0

for some compact KH ⊂ T and εH positive.
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Tail & spectral tail rf’s

When the max-stable rf X with cadlag paths is stationary, then
we have (Soulier ’22, Bladt, H., & Shevchenko ’22)

lim
u→∞

E {H(X/u)I(X(0) > u)}
P {X(0) > u}

= E {H(Y )} , u → ∞

for all continuous bounded H : D(T ,R) 7→ R
separated by the null map.

• Y is referred to as the tail rf of X

• Θ = Y /Y (0) is referred to as the spectral tail rf of X

• Y = RΘ with R an 1-Pareto rv independent of Θ
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Key relationships & questions

In more general settings, how to define and relate

•
X,Z, νZ , Y ,Θ

• max-stability

• shift-invariance

• regular variation for defining Y can be dropped, see below

• Pickands & other constants?

• Applications?
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Definition of HL
Z

Let Z(t), t ∈ T with T = Rl be jointly measurable and separable.
Suppose that for all compact K ⊂ T (11) holds, i.e.,

E
{
sup
t∈K

|Z(t)|
}

< ∞, P
{
sup
t∈T

|Z(t)| > 0

}
= 1

Given an additive subgroup L of T define PiC’s by

HL
Z = lim

T→∞
HL

Z [T ], HL
Z [T ] =

1

T l
E

{
sup

t∈[0,T ]l∩L
|Z(t)|

}
(15)

Of interest: L = T or L is a full rank lattice on Rl.
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Relations with max-stable stationary X
Lem 1: If Z satisfies the tilt-shift formula

E {|Z(h)|H(Z)} = E
{
|Z(0)|H(BhZ)

}
, ∀h ∈ T (16)

then the max-stable stationary X with representor |Z| has
extremal index HL

Z , i.e.,

lim
T→∞

P

{
sup

t∈δ∩Zl∩[0,T ]l
X(t) ≤ Tx

}
= e−HL

Z/x, x > 0

with

HL
Z ∈ [0,∞) (17)
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1-Homogeneous shift-invariant classes of rf’s

Consider the class K[Z] of all jointly measurable rf’s Z(t), t ∈ T
defined on some complete (Ω,F ,P) such that (11) holds, i.e.,

P
{
sup
t∈T

|Z̃(t)| > 0

}
= 1, E

{
sup
t∈K

|Z̃(t)|
}

< ∞

for all compact K ⊂ T and Z̃ ∈ K[Z], see [16, 17].
Suppose the tilt-shift formula (13) is valid and further

E {|Z(h)|H(Z)} = E
{
|Z̃(h)|H(Z̃)

}
, ∀h ∈ T , Z̃ ∈ K[Z] (18)

for all H : D(T ,R) 7→ [0,∞] measurable 0-homogeneous maps.
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Stationary Z

When Z is a stationary rf, the tilt-shift formula (16) is valid,
so we can define K[Z].
Moreover, for such Z we have

HL
Z = 0

Not any Z defines a K[Z]; non-stationary Z’s are of interest.
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Refinements of tilt-shift formula
Thm 1: For all Z̃ ∈ K[Z] we have

E {H(Z)} = E
{
H(BhZ̃)

}
, ∀h ∈ T

where H : D(T ,R) 7→ [0,∞] is 1-homogeneous including

IT : f 7→
∫
T
|f(t)|λ(dt)

Moreover, there ∃ a Z̃ ∈ K[Z] stochastically continuous
satisfying

P
{
IT (Z̃) > 0

}
= 1 (19)
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The spectral tail rf Θ

Given a K[Z] determine Θ as the rf Z/|Z(0)| under

P̂(A) =
1

E {Z(0)}
E {ZI(A)} , ∀A ∈ F
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Properties of Θ

• (13) is equivalent with: ∀Γ ∈ H1 including IT

E {|Θ(h)|Γ(Θ)} = E
{
I(|Θ(−h)| ≠ 0)Γ(BhΘ)

}
, ∀h ∈ T

• P {|Θ(0)| = 1} = 1

• A third property follows from E {supt∈K |Z(t)|} < ∞

Given Θ satisfying the above properties, a shift-invariant K[Z]
can be constructed [18, 19, 16].
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The tail rf Y

We can define the tail rf Y by

Y = RΘ

with R a 1-Pareto rv independent of Θ.
We can choose Θ to be stochastically continuous.
This implies

• P {IT (Θ) > 0} = 1

• Y is stochastically continuous

• ST (Y ) =
∫
t∈T I(|Y (t)| > 1)λ(dt) > 0 almost surely
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Properties of Y

• ∀ measurable Γ including IT , ST , see [13, 14, 16, 20]

E
{
Γ(xBhY )

}
= xE

{
Γ(Y )I(|xB−hY /x| > 1)

}
, ∀h ∈ T , x > 0

• |Y (0)| is an 1-Pareto rv

• For all compact K ⊂ T with positive Lebesgue measure∫
t∈K

E

{
1∫

s∈K I(|Y (s− t)| > 1)λ(ds)

}
λ(dt) < ∞ (20)

Conversely, given Y satisfying the above properties,
a shift-invariant K[Z]
can be constructed (Kulik & Soulier ’20, Soulier ’22, H. ’24).
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Cluster RF’s Q
Let Q(t), t ∈ T be jointly measurable and separable.
Suppose that for all compact K ⊂ T

P
{
sup
t∈T

|Q(t)| > 0

}
= 1,

∫
T
E
{
sup
t∈K

|Q(v − t)|
}
λ(dv) < ∞ (21)

If N is independent of Q with density p(t) > 0, t ∈ T , then

Z(t) =
BNQ(t)

p(N)
, t ∈ T

defines a shift-invariant K[Z].

Q4: Given K[Z] does a corresponding Q exist?
If yes, how to construct Q?

Extremes of GP’s Constants PiC’s K[Z]’s Θ & Y Q’s Applications 28



Example: Brown-Resnick K[Z]

Consider for W a centered GRF with stationary increments

Z(t) = eW (t)−V ar(W (t))/2, t ∈ T

Z defines a shift-invariant K[Z] and a shift-invariant νZ .
For this case

Θ(t) = eW (t)−W (0)−γ(t)/2, t ∈ T

with variogram γ(t) = V ar(W (t)−W (0)), and

Y (t) = eE+W (t)−W (0)−γ(t)/2, t ∈ T

with E a unit exponential rv independent of W .
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Existence of Q

Lem 2: Given a shift-invariant K[Z], then a stochastically
continuous cluster rf Q exists iff almost surely

• IT (Z) =
∫
T |Z(t)|λ(dt) < ∞

• IT (Θ) < ∞
• ST (Y ) =

∫
T I(|Y (t)| > 1)λ(dt) < ∞

or one of the above holds with T substituted Zl

and λ substituted by the counting measure on Zl.
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Constructions of different Q’s

Thm 2: If

P
{∫

T
|Z(t)|λ(dt) < ∞

}
= 1

then stochastically continuous Q can be constructed.
We have

Q = cΘ, c−1 = IT (Θ)

Q = cY , c−1 = sup
t∈T

|Y (t)|ST (Y )

Remark: Other constructions possible by employing anchoring
maps, [18, 15, 17].
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Generalised Picaknds constants

Lem 3: If L = {Ax, x ∈ Zl}, where A is a l × l real, non-singular
matrix or L = T and K[Z] possesses a cluster rf Q, then

HL
Z =

1

∆(L)
E
{
sup
t∈L

|Q(t)|
}

where ∆(L) is the volume of {Ax, x ∈ [0, 1)l}.

Remark: a) New representations for B-R X follow.
b) When L = T , then set ∆(L) = 1.
c) More results in [18, 17].
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Rosiński representations (RR’s)

If for K[Z] exists a cluster rf Q and Z is non-negative,
then for the corresponding max-stable X we have a new
representation for its fidi’s.
Namely, for xi’s positive and ti’s in T

P {X(ti) ≤ xi, 1 ≤ i ≤ k} = e−E{∫T max1≤i≤k Qi(ti−s)/xiλ(ds)} (22)

Remark: a) RR’s also called M3 or moving maxima
representation.
b) New Q’s lead to new RR’s
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Shift-representations of tail measures

If νZ is a shift-invariant tail measure and Z has a cluster rf Q,
then νZ can be defined as a mixture of νBhQ.
Specifically, we have

νZ [H] =

∫
T
νBhQ[H]λ(dh)

with λ the Lebesgue measure.
Some properties of such tail measures can be explored in terms of
Y or Θ and Q, [18, 15, 17].
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New self-similar covariance functions

Tail measures νZ appear in the limit of different functionals (Kulik
& Soulier ’20). Given a cluster rf Q with corresponding tail rf Y ,
under weak assumptions

K(s, t) = s

∫
T
P {|Y (h)| > t/s}λ(dh), 0 < s ≤ t (23)

defines a covariance kernel.
Extensions and further ideas is work in progress, H. 25+.
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