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Linear optimization

Given an n-dimensional vector b and an n x d matrix A
find, in any, a d-dimensional vector x such that :

Ax=Db Ax=b, x20
linear algebra linear optimization

“Can linear optimization be solved in strongly polynomial time?”
is listed by Smale as one of the top problems for the XXI century

Strongly polynomial : algorithm independent from
the input data length and polynomial in n and d.




Linear optimization algorithms
simplex methods

Given an n-dimensional vector b and an n x d (full row-rank) matrix A
and a d-dimensional cost vector ¢, solve : max{c'x: Ax=b,x20}

Simplex methods (Dantzig 1947): pivot-based, combinatorial,
not proven to be polynomial, efficient in practice

> start from a feasible basis
» use a pivot rule

» find an optimal solution after a finite number of iterations

» most known pivot rules are known to be exponential
(worst case); efficient implementations exist
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Linear optimization algorithms
simplex methods

Given an n-dimensional vector b and an n x d (full row-rank) matrix A
and a d-dimensional cost vector ¢, solve : max{c'x: Ax=b,x20}

Simplex methods (Dantzig 1947): pivot-based, combinatorial,
not proven to be polynomial, efficient in practice

> start from a feasible basis
» use a pivot rule

» find an optimal solution after a finite number of iterations

» most known pivot rules are known to be exponential
(worst case); efficient implementations exist

» 9(d,n) largest diameter over all (d,n)-polytopes: lower %\ /

bound on the number of simplex pivots required in the worst case.
» random spherical polytopes [Bonnet, Dadush, Grupel, Huiberts,

Livshyts 2021], smooth analysis [Huiberts, Lee, Zhang 2024], ...
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Linear optimization algorithms
simplex methods

Given an n-dimensional vector b and an n x d (full row-rank) matrix A
and a d-dimensional cost vector ¢, solve : max{c'x: Ax=b,x20}

Simplex methods (Dantzig 1947): pivot-based, combinatorial,
not proven to be polynomial, efficient in practice

> start from a feasible basis
» use a pivot rule

» find an optimal solution after a finite number of iterations

» most known pivot rules are known to be exponential
(worst case); efficient implementations exist

> 0(d,k) largest diameter over all lattice (d,k)-polytopes:
lower bound on the number of simplex pivots in the worst case.

> [Del Pia-Michini 2022] preprocessing and scaling algorithm yielding
simplex paths that are short relative to 6(d, k)



Linear optimization algorithms
(central path following) interior point methods

Given an n-dimensional vector b and an n x d (full row-rank) matrix A
and a d-dimensional cost vector ¢, solve : max{c'x: Ax=b,x20}

Interior Point Methods :

path-following, polynomial, efficient in practice

» start from the analytic center
» follow the central path

» converge to an optimal solution in O(VnL) iterations

(L: input data length)
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max c'x— U zln(b — Ax),

- central path parameter
xeP:Ax<b



Linear optimization diameter and curvature

Diameter (of a polytope) :

lower bound for the number of iterations for pivoting
simplex methods

Curvature (of the central path associated to a polytope) -

large curvature indicates large number of iterations
for path following interior point methods
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Linear optimization

Given an n-dimensional vector b and an n x d (full row-rank) matrix A
and a d-dimensional cost vector ¢, solve : max{c'x: Ax=b,x20}

“Can linear optimization be solved in strongly polynomial time?”
is listed by Smale as one of the top problems for the XXI century

» [Dedieu-Malajovich-Shub 2005]
Average curvature of the central path is bounded by 2nd

(analogue of Haimovich (Borgwardt 1987) analysis of the simplex)

analytic
center

N

» Conjecture [Dedieu-Malajovich 2005]
Curvature of the central path is O(d) cl

» [Deza-Terlaky-Zinchenko 2008]
Counterexample to Dedieu-Malajovich conjecture ~ 2°'™

solution
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central
«— path

» Conjecture [Deza-Terlaky-Zinchenko 2008]
Curvature of the central path is O(n,d)
(continuous analogue of the Hirsch conjecture)



Linear optimization

Given an n-dimensional vector b and an n x d (full row-rank) matrix A
and a d-dimensional cost vector ¢, solve : max{c'x: Ax=b,x20}

“Can linear optimization be solved in strongly polynomial time?”
is listed by Smale as one of the top problems for the XXI century

» [Allamigeon, Benchimol, Gaubert, Joswig 2018]
(logarithmic barrier) Interior point methods
are not strongly polynomial
(tropical counterexample to continuous Hirsch conjecture) Cl

analytic
center

» [Allamigeon, Gaubert, Vandame 2022] N
(self-concordant barrier) Interior point methods

are not strongly polynomial optimal

solution

W
» Further results: [Allamigeon-Dadush-Loho-Natura-Végh 20247, ....
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Kissing Polytopes

Q. How close can two disjoint d-dimensional 0/1-polytopes be?

(1L,41)

(0,0/ o) (1,0,07

Motivation: this minimal distance appears in complexity bounds of
algorithms such as von Neumann’s alternating projections

Complexity of certifying that PN Q = 0 is

1
O(d(P, @>2>

Alternating Linear Minimization: Revisiting von Neumann's alternating
projections [Braun-Pokutta-Weismantel 2022]




Main question, motivation, related works

Related works: V : vertex set of a polytope P

e Facial distance of P is:

d(P) = min{d(F, conv(V \ F)) . I proper face of P}
[Pefia-Rodriguez 2018], [Gutman-Pefa 2018], [Pefa 2019]

e Vertex-facet distance of P is:
A(P) = min{d(aﬁ‘(F),conv(V \ F)) . I facet of P}
[Beck-Shtern 2017]

e Minimal vertex-facet distance of all d-dimensional 0/1-simplex S

1 _ 1
/2d10g d—2d+o(d) < min A(S) < /2d10g d—4d+o(d)

[Alon-V@ 1997]




Main results

o If P and (Q are disjoint d-dimensional 0/1-polytopes, then

it S AP.Q)

o For any large enough d, there exist two disjoint d-dimensional
0/1-polytopes P and () such that

1
Vdvd

d(P, Q) <



Main results

Theorem: For any large enough d, there exist two disjoint d-
dimensional 0/1-polytopes P and () such that

1 1
T SR < —

Similar bounds for lattice (d, k)-polytope (that is, convex hull of
points drawn from {0,1,...,k}%)

New bounds for the minimal facial distance &(FP) over of all
lattice (d, k)-polytopes P

Similar bounds for rational polytopes in terms of binary encoding
length and dimension



How close can disjoint O/1-polytopes be?

= e(d,1) = min{d(P,Q) : P,Q disjoint d-dimensional 0/1-polytopes}

What about dimension 2 7

(‘7/‘)

Q

&
{OIO.) (‘/ o)

d(P,Q) = o,i, 1 or V2 = e(2,1) =

1
V2 V2



How close can disjoint 0/1-polytopes be?

= e(d,1) = min{d(P,Q) : P,Q disjoint d-dimensional 0/1-polytopes}

What about dimension 2 7

(O/‘)

Q

3
{OIO.) (‘/ o)

1 1
d(P,Q):O,\ﬁ,l or v/2 = 6(2’1):ﬁ

e c(2,1) achieved as d(p*, ¢*) with ¢* not a vertex of @)

e If P or Q is reduced to a vertex, d(P,Q) > % for any d



How close can disjoint 0/1-polytopes be?

= e(d,1) = min{d(P,Q) : P,Q disjoint d-dimensional 0/1-polytopes}

What about dimension 3 7
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How close can disjoint 0/1-polytopes be?

= e(d,1) = min{d(P,Q) : P,Q disjoint d-dimensional 0/1-polytopes}

What about dimension 3 7

[1,91)

(0,0/0) (1,0/'0')
1 1 2 1 2 3 1
d(P,Q)=0,\@,\@,\/§,\6,\@,1,%,\f2 orv3 = e(3,1)=%

e =(3,1) achieved as d(p*, ¢*) with both p* and ¢* not vertices of P, (Q

e If both P and Q are segments, d(P,Q) > \%6 for any d



How close can disjoint 0/1-polytopes be?

= e(d,1) = min{d(P,Q) : P,Q disjoint d-dimensional 0/1-polytopes}

What about dimension d 7

(0,0,,0)
Q *\\:-(9":‘1.’\.,. (z,z0)
R
(0,992) f fr 0,08
PN
(xz,s.)

P: segment [(0,0,...,0),(1,1,...,1)]
Q: (d —2)-simplex with vertices (1,0,..0,0),(0,1,..0,0),...,(0,0,..1,0)



How close can disjoint 0/1-polytopes be?

= e(d,1) = min{d(P,Q) : P,Q disjoint d-dimensional 0/1-polytopes}

What about dimension d 7

(0,0,,0)
. SR 2. .. (%4=9)
R
(0,992) f f10,0,9)
P | "
(xz,sq)

P: segment [(0,0,...,0),(1,1,...,1)]

Q: (d — 2)-simplex with vertices (1,0,..0,0),(0,1,..0,0),...,(0,0,..1,0)
* 1 * — _1 koK) — 1

p - d(1717"'?1)7 q d_1(171?"'7170>7 d(p 7q ) d(d—l)




How close can disjoint 0/1-polytopes be?

= e(d,1) = min{d(P,Q) : P,Q disjoint d-dimensional 0/1-polytopes}

e Obtaining a non-trivial upper bound on e(d, 1) requires to exhibit
two disjoint polytopes that are very close

e Obtaining a lower bound on e(d,1) requires investigating the
geometric setup



Geometric setup for rational polytopes

Remark: If P and Q are rational polytopes then d(P, Q)2 is rational
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Remark: If P and Q are rational polytopes then d(P, Q)2 is rational

Direct consequence of stronger result on the complexity of quadratic
optimization [Vavasis 1990], see also [Del Pia-Dey-Molinaro 2017]



Geometric setup for rational polytopes

Remark: If P and Q are rational polytopes then d(P, Q)2 is rational

Direct consequence of stronger result on the complexity of quadratic
optimization [Vavasis 1990], see also [Del Pia-Dey-Molinaro 2017]

Direct geometric proof yvields a lower bound:

(1,41)

(0,0,0) (1,0,9)

d(P,()) achieved as d(p*, ¢*) with (p* — ¢*) orthogonal to a unique
face of P (resp. Q) containing p* (resp. ¢*) in its relative interior



Geometric setup for rational polytopes

Remark: If P and Q are rational polytopes then d(P, Q)2 is rational

Direct consequence of stronger result on the complexity of quadratic
optimization [Vavasis 1990], see also [Del Pia-Dey-Molinaro 2017]
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face of P (resp. Q) containing p* (resp. ¢*) in its relative interior

e (essentially) Cramer’s rule yields (p* — ¢*) is rational



Geometric setup for rational polytopes

Remark: If P and Q are rational polytopes then d(P, Q)2 is rational

Direct consequence of stronger result on the complexity of quadratic
optimization [Vavasis 1990], see also [Del Pia-Dey-Molinaro 2017]

Direct geometric proof yvields a lower bound:

(1,41)

(0,0,0) (1,0,2)

d(P,()) achieved as d(p*, ¢*) with (p* — ¢*) orthogonal to a unique
face of P (resp. Q) containing p* (resp. ¢*) in its relative interior

e (essentially) Cramer’s rule yields (p* — ¢*) is rational

e (in addition) d(P, Q) can be achieved with both p* and ¢* rational



Geometric setup for rational polytopes

Remark: If P and Q are rational polytopes then d(P, Q)2 is rational

Direct consequence of stronger result on the complexity of quadratic
optimization [Vavasis 1990], see also [Del Pia-Dey-Molinaro 2017]

Direct geometric proof yvields a lower bound:

(1,41)

(0,0,0) (1,0,2)

d(P,()) achieved as d(p*, ¢*) with (p* — ¢*) orthogonal to a unique
face of P (resp. Q) containing p* (resp. ¢*) in its relative interior

e (essentially) Cramer’s rule yields (p* — ¢*) is rational

e (essentially) Hadamard's inequality yields d(p*, ¢*) > \F3d+2



How close can disjoint 0/1-polytopes be?

e(d,1) = min{d(P,Q) : P,Q disjoint d-dimensional 0/1-polytopes}

1
Jd3d+2

e Obtaining a non-trivial upper bound on e(d, 1) requires to exhibit
two disjoint polytopes that are very close

<e(d,1)< 7




How close can disjoint 0/1-polytopes be?

e(d,1) = min{d(P,Q) : P,Q disjoint d-dimensional 0/1-polytopes}

1
Jd3d+2

e Obtaining a non-trivial upper bound on e(d, 1) requires to exhibit
two disjoint polytopes that are very close

<e(d,1)< 7

o Intuition: d(P,Q) might be not too different from d(aff(P), aff(Q))
Example: For : <d— 1, consider two consecutive hyper-simplices:

P = convex hull of all z € {0,1} such that 1 +ao+---+z,=1

@ = convex hull of all z € {0,1}¢ such that 1 +ao+---+z;,=i+1

a=(1,1,...,1) orthogonal to both aff(P) and aff(Q)

11
Vvd ||l

= d(P,Q) =d(aff(P),aff(Q)) =



How close can disjoint 0/1-polytopes be?

e(d,1) = min{d(P,Q) : P,Q disjoint d-dimensional 0/1-polytopes}

1
Jd3d+2

e Obtaining a non-trivial upper bound on e(d, 1) requires to exhibit
two disjoint polytopes that are very close

<e(d,1)< 7

o Intuition: d(P,Q) might be not too different from d(aff(P), aff(Q))
Example: For : <d— 1, consider two consecutive hyper-simplices:

P = convex hull of all z € {0,1} such that 1 +ao+---+z,=1
Q = convex hull of all z € {0,1}? such that 1 + a0+ -+ ay,=i+1

a=(1,1,...,1) orthogonal to both aff(P) and aff(Q)

11
vVd la]
o Can we make ||a|| larger while maintaining d(P, Q) = d(aff(P), aff(Q))7

= d(P,Q) =d(aff(P),aff(Q)) =



How close can disjoint 0/1-polytopes be?

e(d,1) = min{d(P,Q) : P,Q disjoint d-dimensional 0/1-polytopes}
Consider much larger ||a]|

ea~(1,. ,1,—\f f (= \f)\/_ ,(—\/a)\/gj)

\

\ftlmes \ftlmes \ftimes

e P = convex hull of all z € {0,1}? such that a:z = 0

e () = convex hull of all z € {0,1}¢ such that a-z =1

Maintaining d(P, Q) = d(aff(P), aff(Q)):
(careful) convex combination of (carefully) chosen vertices in P (resp.
() yields a point p* € P (resp. ¢* € QQ) such that, for d large enough

1 1
d(p*,¢") =~ — =~
||| \/g\/g




How close can disjoint lattice polytopes be?

e(d,1) = min{d(P,Q) : P,Q disjoint d-dimensional 0/1-polytopes}

1 1
< <
Jg3d+2 = =(d,1) < vV

e(d, k) = min{d(P,Q) : P, disjoint lattice (d, k)-polytopes}

1
}2d—1,/3d+2

<e(d k) < ——
(k/d)Vd



How close can disjoint lattice polytopes be?

e(d,1) = min{d(P,Q) : P,Q disjoint d-dimensional 0/1-polytopes}

L 1)<
Jazd+2 =\ —\/&\/g

e(d, k) = min{d(P,Q) : P, disjoint lattice (d, k)-polytopes}

1
}2d—1,/3d+2 <

e(d, k) < 1
(kV/d)Vd

Q. How to compute the minimal distance between disjoint
lattice polytopes for small dimension d and small range k7



How close can disjoint lattice polytopes be?

e(d, k) = min{d(P,Q) : P, disjoint lattice (d, k)-polytopes}

Exploiting the symmetries of the cube, proving that one can assume
that P is a simplex such that 1 < dim(P) < |4], and Q is a simplex
such that dim(Q) = d+1—-dim(P), significantly reduce the huge search
space and allow for the computation of ¢(d, k) for small (d, k):

(d, k)| 1 2 3 4 5 6

Al vz vB vizs vas val Vel

1

=€ V6 V50 /299
1

san | V18

1

SGo) | Vo8




How close can disjoint lattice polytopes be?

e(d, k) = min{d(P,Q) : P, disjoint lattice (d, k)-polytopes}

[Deza-Liu-Pournin 2024]

__ 1
o c(2,k) = T for k> 2

3,k) = 1 for k> 4
* =3.F) V2@ —arts)(@ir—2erny o F

Determination of (3, k) amounts to minimize
()|

v g(x)

f(x) = x1(zexs — z529) + z2(2479 — T627) + 23(T527 — T4278)

g(z) = (z125 — wox4)? + (v126 — T374)° + (2276 — T375)?

such that f(x) #0, g(z) #0, -k <zx; <k, z; integer fori =1,2,...,9



How close can disjoint lattice polytopes be?

e(d, k) = min{d(P,Q) : P, disjoint lattice (d, k)-polytopes}

(d, k) 1 2 3 4 k

6(21,k) v2 /5 V13 V25 ... \/(k —1)2 4 k2

2y | V6 VB0 V299 V1050 ... /2(2k?—4k+5)(2k2 — 2k + 1)
Gw | V18

V58



How close can disjoint lattice polytopes be?

e(d, k) = min{d(P,Q) : P, disjoint lattice (d, k)-polytopes}

(k)| 1 2 3 4 .. I
6(21,k) v2 /5 V13 V25 ... \/(k —1)2 4 k2

2y | V6 VB0 V299 V1050 ... /2(2k?—4k+5)(2k2 — 2k + 1)
Gw | V18

G | V58

T hanks



