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Linear optimization

Given an n-dimensional vector b and an n x d matrix A
find, in any, a d-dimensional vector x such that :

Ax = b Ax = b, x ≥ 0

linear algebra linear optimization

“Can linear optimization be solved in strongly polynomial time?”
is listed by Smale as one of the top problems for the XXI century

Strongly polynomial : algorithm independent from
the input data length and polynomial in n and d.



Given an n-dimensional vector b and an n x d (full row-rank) matrix A
and a d-dimensional cost vector c, solve : max { cTx : Ax = b, x ≥ 0 }

Simplex methods (Dantzig 1947): pivot-based, combinatorial, 
not proven to be polynomial, efficient in practice 

Ø start from a feasible basis
Ø use a pivot rule
Ø find an optimal solution after a finite number of iterations

Ø most known pivot rules are known to be exponential
(worst case); efficient implementations exist
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Linear optimization algorithms 
simplex methods



Given an n-dimensional vector b and an n x d (full row-rank) matrix A
and a d-dimensional cost vector c, solve : max { cTx : Ax = b, x ≥ 0 }

Simplex methods (Dantzig 1947): pivot-based, combinatorial, 
not proven to be polynomial, efficient in practice 

Ø start from a feasible basis
Ø use a pivot rule
Ø find an optimal solution after a finite number of iterations

Ø most known pivot rules are known to be exponential
(worst case); efficient implementations exist

Ø d(d,n) largest diameter over all (d,n)-polytopes: lower

bound on the number of simplex pivots required in the worst case. 
Ø d(4,12)= d(5,12) =7  [Bremner-Deza-Hua-Schewe 2013] , …
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Given an n-dimensional vector b and an n x d (full row-rank) matrix A
and a d-dimensional cost vector c, solve : max { cTx : Ax = b, x ≥ 0 }

Simplex methods (Dantzig 1947): pivot-based, combinatorial, 
not proven to be polynomial, efficient in practice 

Ø start from a feasible basis
Ø use a pivot rule
Ø find an optimal solution after a finite number of iterations

Ø most known pivot rules are known to be exponential
(worst case); efficient implementations exist

Ø d(d,n) largest diameter over all (d,n)-polytopes: lower

bound on the number of simplex pivots required in the worst case. 
Ø random spherical polytopes [Bonnet, Dadush, Grupel, Huiberts, 

Livshyts 2021], smooth analysis [Huiberts, Lee, Zhang 2024], …
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Given an n-dimensional vector b and an n x d (full row-rank) matrix A
and a d-dimensional cost vector c, solve : max { cTx : Ax = b, x ≥ 0 }

Simplex methods (Dantzig 1947): pivot-based, combinatorial, 
not proven to be polynomial, efficient in practice 

Ø start from a feasible basis
Ø use a pivot rule
Ø find an optimal solution after a finite number of iterations

Ø most known pivot rules are known to be exponential
(worst case); efficient implementations exist

Ø d(d,k) largest diameter over all lattice (d,k)-polytopes: 

lower bound on the number of simplex pivots in the worst case. 

Linear optimization algorithms 
simplex methods



Given an n-dimensional vector b and an n x d (full row-rank) matrix A
and a d-dimensional cost vector c, solve : max { cTx : Ax = b, x ≥ 0 }

Simplex methods (Dantzig 1947): pivot-based, combinatorial, 
not proven to be polynomial, efficient in practice 

Ø start from a feasible basis
Ø use a pivot rule
Ø find an optimal solution after a finite number of iterations

Ø most known pivot rules are known to be exponential
(worst case); efficient implementations exist

Ø d(d,k) largest diameter over all lattice (d,k)-polytopes: 

lower bound on the number of simplex pivots in the worst case. 
Ø [Del Pia-Michini 2022] preprocessing and scaling algorithm yielding 

simplex paths that are short relative to d(d,k)

Linear optimization algorithms 
simplex methods



Given an n-dimensional vector b and an n x d (full row-rank) matrix A
and a d-dimensional cost vector c, solve : max { cTx : Ax = b, x ≥ 0 }

Interior Point Methods :
path-following, polynomial, efficient in practice 

Ø start from the analytic center
Ø follow the central path
Ø converge to an optimal solution in O(√nL) iterations

(L:  input data length)

_

µmax cΤx − ln(b− Ax)i
i
∑

µ : central path parameter
x ÎP : Ax ≤ b

analytic 
center

central
pathoptimal

solution

c

Linear optimization algorithms 
(central path following) interior point methods



Diameter (of a polytope) : 

lower bound for the number of iterations for pivoting
simplex methods

Curvature (of the central path associated to a polytope) :

large curvature indicates large number of iterations
for path following interior point methods

Linear optimization diameter and curvature 
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Given an n-dimensional vector b and an n x d (full row-rank) matrix A
and a d-dimensional cost vector c, solve : max { cTx : Ax = b, x ≥ 0 }

“Can linear optimization be solved in strongly polynomial time?”
is listed by Smale as one of the top problems for the XXI century

Ø [Dedieu-Malajovich-Shub 2005]
Average  curvature of the central path is bounded by 2πd
(analogue of Haimovich (Borgwardt 1987) analysis of the simplex)

Ø Conjecture   [Dedieu-Malajovich 2005] 
Curvature of the central path is O(d)

Ø [Deza-Terlaky-Zinchenko 2008]
Counterexample to Dedieu-Malajovich conjecture 

Ø Conjecture [Deza-Terlaky-Zinchenko 2008]
Curvature of the central path is O(n,d)
(continuous analogue of the Hirsch conjecture)

Linear optimization
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Given an n-dimensional vector b and an n x d (full row-rank) matrix A
and a d-dimensional cost vector c, solve : max { cTx : Ax = b, x ≥ 0 }

“Can linear optimization be solved in strongly polynomial time?”
is listed by Smale as one of the top problems for the XXI century

Ø [Allamigeon, Benchimol, Gaubert, Joswig 2018]
(logarithmic barrier) Interior point methods 
are not strongly polynomial 

(tropical counterexample to continuous Hirsch conjecture)

Ø [Allamigeon, Gaubert, Vandame 2022]
(self-concordant barrier) Interior point methods 
are not strongly polynomial 

Ø Further results: [Allamigeon-Dadush-Loho-Natura-Végh 2024] , ….
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Kissing Polytopes

Q. How close can two disjoint d-dimensional 0/1-polytopes be?

Motivation: this minimal distance appears in complexity bounds of

algorithms such as von Neumann’s alternating projections

Complexity of certifying that P \Q = ; is

O

 
1

d(P ,Q)2

!

Alternating Linear Minimization: Revisiting von Neumann’s alternating
projections [Braun-Pokutta-Weismantel 2022]
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Main question, motivation, related works

Related works: V : vertex set of a polytope P

• Facial distance of P is:

�(P ) = min

n
d

⇣
F, conv(V \ F )

⌘
: F proper face of P

o

[Peña-Rodriguez 2018], [Gutman-Peña 2018], [Peña 2019]

• Vertex-facet distance of P is:

�(P ) = min

n
d

⇣
a↵(F ), conv(V \ F )

⌘
: F facet of P

o

[Beck-Shtern 2017]

• Minimal vertex-facet distance of all d-dimensional 0/1-simplex S

1p
2d log d�2d+o(d)

 min �(S) 
1p

2d log d�4d+o(d)

[Alon-Vũ 1997]
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Main results

� If P and Q are disjoint d-dimensional 0/1-polytopes, then

1p
d3d+2

 d(P ,Q)

� For any large enough d, there exist two disjoint d-dimensional

0/1-polytopes P and Q such that

d(P ,Q) 
1

p
d

p
d
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Main results

• Theorem: For any large enough d, there exist two disjoint d-

dimensional 0/1-polytopes P and Q such that

1p
d3d+2

 d(P ,Q) 
1

p
d

p
d

) Similar bounds for lattice (d, k)-polytope (that is, convex hull of

points drawn from {0,1, . . . , k}d)

) New bounds for the minimal facial distance �(P ) over of all

lattice (d, k)-polytopes P

) Similar bounds for rational polytopes in terms of binary encoding

length and dimension
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How close can disjoint 0/1-polytopes be?

) "(d,1) = min{d(P ,Q) : P ,Q disjoint d-dimensional 0/1-polytopes}

What about dimension 2 ?

d(P ,Q) = 0,
1p
2
,1 or

p
2 ) "(2,1) =

1p
2
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How close can disjoint 0/1-polytopes be?

) "(d,1) = min{d(P ,Q) : P ,Q disjoint d-dimensional 0/1-polytopes}

What about dimension 2 ?

d(P ,Q) = 0,
1p
2
,1 or

p
2 ) "(2,1) =

1p
2

• "(2,1) achieved as d(p
⇤
, q

⇤
) with q

⇤ not a vertex of Q

• If P or Q is reduced to a vertex, d(P ,Q) � 1p
d
for any d

6



How close can disjoint 0/1-polytopes be?

) "(d,1) = min{d(P ,Q) : P ,Q disjoint d-dimensional 0/1-polytopes}

What about dimension 3 ?

d(P ,Q) = 0,
1p
6
,
1p
3
,
2p
3
,
1p
2
,
2p
6
,1,

3p
6
,
p
2 or

p
3 ) "(3,1) =

1p
6
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How close can disjoint 0/1-polytopes be?

) "(d,1) = min{d(P ,Q) : P ,Q disjoint d-dimensional 0/1-polytopes}

What about dimension 3 ?

d(P ,Q) = 0,
1p
6
,
1p
3
,
2p
3
,
1p
2
,
2p
6
,1,

3p
6
,
p
2 or

p
3 ) "(3,1) =

1p
6

• "(3,1) achieved as d(p
⇤
, q

⇤
) with both p

⇤
and q

⇤ not vertices of P ,Q

• If both P and Q are segments, d(P ,Q) � 1p
6
for any d
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How close can disjoint 0/1-polytopes be?

) "(d,1) = min{d(P ,Q) : P ,Q disjoint d-dimensional 0/1-polytopes}

What about dimension d ?

P : segment [(0,0, . . . ,0), (1,1, . . . ,1)]

Q: (d� 2)-simplex with vertices (1,0, ..0, 0), (0,1, ..0, 0), . . . , (0,0, ..1, 0)
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How close can disjoint 0/1-polytopes be?

) "(d,1) = min{d(P ,Q) : P ,Q disjoint d-dimensional 0/1-polytopes}

What about dimension d ?

P : segment [(0,0, . . . ,0), (1,1, . . . ,1)]

Q: (d� 2)-simplex with vertices (1,0, ..0, 0), (0,1, ..0, 0), . . . , (0,0, ..1, 0)

p
⇤
=

1

d
(1,1, . . . ,1), q

⇤
=

1

d�1
(1,1, . . . ,1,0), d(p

⇤
, q

⇤
) =

1p
d(d�1)
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How close can disjoint 0/1-polytopes be?

) "(d,1) = min{d(P ,Q) : P ,Q disjoint d-dimensional 0/1-polytopes}

• Obtaining a non-trivial upper bound on "(d,1) requires to exhibit

two disjoint polytopes that are very close

• Obtaining a lower bound on "(d,1) requires investigating the

geometric setup
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Geometric setup for rational polytopes

Remark: If P and Q are rational polytopes then d(P ,Q)
2
is rational
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Geometric setup for rational polytopes

Remark: If P and Q are rational polytopes then d(P ,Q)
2
is rational

Direct consequence of stronger result on the complexity of quadratic

optimization [Vavasis 1990], see also [Del Pia-Dey-Molinaro 2017]
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Geometric setup for rational polytopes

Remark: If P and Q are rational polytopes then d(P ,Q)
2
is rational

Direct consequence of stronger result on the complexity of quadratic

optimization [Vavasis 1990], see also [Del Pia-Dey-Molinaro 2017]

Direct geometric proof yields a lower bound:

d(P ,Q) achieved as d(p
⇤
, q

⇤
) with (p

⇤ � q
⇤
) orthogonal to a unique

face of P (resp. Q) containing p
⇤
(resp. q

⇤
) in its relative interior
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Geometric setup for rational polytopes

Remark: If P and Q are rational polytopes then d(P ,Q)
2
is rational

Direct consequence of stronger result on the complexity of quadratic

optimization [Vavasis 1990], see also [Del Pia-Dey-Molinaro 2017]

Direct geometric proof yields a lower bound:

d(P ,Q) achieved as d(p
⇤
, q

⇤
) with (p

⇤ � q
⇤
) orthogonal to a unique

face of P (resp. Q) containing p
⇤
(resp. q

⇤
) in its relative interior

• (essentially) Cramer’s rule yields (p
⇤ � q

⇤
) is rational
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Geometric setup for rational polytopes

Remark: If P and Q are rational polytopes then d(P ,Q)
2
is rational

Direct consequence of stronger result on the complexity of quadratic

optimization [Vavasis 1990], see also [Del Pia-Dey-Molinaro 2017]

Direct geometric proof yields a lower bound:

d(P ,Q) achieved as d(p
⇤
, q

⇤
) with (p

⇤ � q
⇤
) orthogonal to a unique

face of P (resp. Q) containing p
⇤
(resp. q

⇤
) in its relative interior

• (essentially) Cramer’s rule yields (p
⇤ � q

⇤
) is rational

• (in addition) d(P ,Q) can be achieved with both p
⇤
and q

⇤ rational
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Geometric setup for rational polytopes

Remark: If P and Q are rational polytopes then d(P ,Q)
2
is rational

Direct consequence of stronger result on the complexity of quadratic

optimization [Vavasis 1990], see also [Del Pia-Dey-Molinaro 2017]

Direct geometric proof yields a lower bound:

d(P ,Q) achieved as d(p
⇤
, q

⇤
) with (p

⇤ � q
⇤
) orthogonal to a unique

face of P (resp. Q) containing p
⇤
(resp. q

⇤
) in its relative interior

• (essentially) Cramer’s rule yields (p
⇤ � q

⇤
) is rational

• (essentially) Hadamard’s inequality yields d(p
⇤
, q

⇤
) � 1p

d3d+2
.
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How close can disjoint 0/1-polytopes be?

"(d,1) = min{d(P ,Q) : P ,Q disjoint d-dimensional 0/1-polytopes}

1p
d3d+2

 "(d,1)  ?

• Obtaining a non-trivial upper bound on "(d,1) requires to exhibit

two disjoint polytopes that are very close
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How close can disjoint 0/1-polytopes be?

"(d,1) = min{d(P ,Q) : P ,Q disjoint d-dimensional 0/1-polytopes}

1p
d3d+2

 "(d,1)  ?

• Obtaining a non-trivial upper bound on "(d,1) requires to exhibit

two disjoint polytopes that are very close

� Intuition: d(P ,Q) might be not too di↵erent from d(a↵(P ), a↵(Q))

Example: For i  d� 1, consider two consecutive hyper-simplices:

P = convex hull of all x 2 {0,1}d such that x1 + x2 + · · ·+ xd = i

Q = convex hull of all x 2 {0,1}d such that x1 + x2 + · · ·+ xd = i+ 1

a = (1,1, . . . ,1) orthogonal to both a↵(P ) and a↵(Q)

) d(P ,Q) = d(a↵(P ), a↵(Q)) =
1p
d
=

1

||a||
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How close can disjoint 0/1-polytopes be?

"(d,1) = min{d(P ,Q) : P ,Q disjoint d-dimensional 0/1-polytopes}

1p
d3d+2

 "(d,1)  ?

• Obtaining a non-trivial upper bound on "(d,1) requires to exhibit

two disjoint polytopes that are very close

� Intuition: d(P ,Q) might be not too di↵erent from d(a↵(P ), a↵(Q))

Example: For i  d� 1, consider two consecutive hyper-simplices:

P = convex hull of all x 2 {0,1}d such that x1 + x2 + · · ·+ xd = i

Q = convex hull of all x 2 {0,1}d such that x1 + x2 + · · ·+ xd = i+ 1

a = (1,1, . . . ,1) orthogonal to both a↵(P ) and a↵(Q)

) d(P ,Q) = d(a↵(P ), a↵(Q)) =
1p
d
=

1

||a||
� Can we make ||a|| larger while maintaining d(P ,Q) = d(a↵(P ), a↵(Q))?
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How close can disjoint 0/1-polytopes be?

"(d,1) = min{d(P ,Q) : P ,Q disjoint d-dimensional 0/1-polytopes}

Consider much larger ||a||

• a ⇡ ( 1, . . . ,1| {z }p
d times

,�
p
d, . . . ,�

p
d| {z }p

d times

, . . . , (�
p
d)

p
d
, . . . , (�

p
d)

p
d

| {z }p
d times

)

• P = convex hull of all x 2 {0,1}d such that a·x = 0

• Q = convex hull of all x 2 {0,1}d such that a·x = 1

Maintaining d(P ,Q) = d(a↵(P ), a↵(Q)):

(careful) convex combination of (carefully) chosen vertices in P (resp.

Q) yields a point p
⇤ 2 P (resp. q

⇤ 2 Q) such that, for d large enough

d(p
⇤
, q

⇤
) ⇡

1

||a||
⇡

1

p
d

p
d
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How close can disjoint lattice polytopes be?

"(d,1) = min{d(P ,Q) : P ,Q disjoint d-dimensional 0/1-polytopes}

1p
d3d+2

 "(d,1) 
1

p
d

p
d

"(d, k) = min{d(P ,Q) : P ,Q disjoint lattice (d, k)-polytopes}

1

k2d�1
p
d3d+2

 "(d, k) 
1

(k
p
d)

p
d
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How close can disjoint lattice polytopes be?

"(d,1) = min{d(P ,Q) : P ,Q disjoint d-dimensional 0/1-polytopes}

1p
d3d+2

 "(d,1) 
1

p
d

p
d

"(d, k) = min{d(P ,Q) : P ,Q disjoint lattice (d, k)-polytopes}

1

k2d�1
p
d3d+2

 "(d, k) 
1

(k
p
d)

p
d

Q. How to compute the minimal distance between disjoint

lattice polytopes for small dimension d and small range k?
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How close can disjoint lattice polytopes be?

"(d, k) = min{d(P ,Q) : P ,Q disjoint lattice (d, k)-polytopes}

Exploiting the symmetries of the cube, proving that one can assume

that P is a simplex such that 1  dim(P )  bd
2
c, and Q is a simplex

such that dim(Q) = d+1�dim(P ), significantly reduce the huge search

space and allow for the computation of "(d, k) for small (d, k):

(d, k) 1 2 3 4 5 6

1

"(2,k)

p
2

p
5

p
13

p
25

p
41

p
61

1

"(3,k)

p
6

p
50

p
299

1

"(4,k)

p
18

1

"(5,k)

p
58
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How close can disjoint lattice polytopes be?

"(d, k) = min{d(P ,Q) : P ,Q disjoint lattice (d, k)-polytopes}

[Deza-Liu-Pournin 2024]

• "(2, k) =
1p

(k�1)
2
+k

2
for k � 2

• "(3, k) =
1p

2(2k
2�4k+5)(2k

2�2k+1)
for k � 4

Determination of "(3, k) amounts to minimize

|f(x)|
q
g(x)

f(x) = x1(x6x8 � x5x9) + x2(x4x9 � x6x7) + x3(x5x7 � x4x8)

g(x) = (x1x5 � x2x4)
2
+ (x1x6 � x3x4)

2
+ (x2x6 � x3x5)

2

such that f(x) 6= 0, g(x) 6= 0, �k  xi  k, xi integer for i = 1,2, . . . ,9
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How close can disjoint lattice polytopes be?

"(d, k) = min{d(P ,Q) : P ,Q disjoint lattice (d, k)-polytopes}

(d, k) 1 2 3 4 . . . k

1

"(2,k)

p
2

p
5

p
13

p
25 . . .

q
(k � 1)

2
+ k

2

1

"(3,k)

p
6

p
50

p
299

p
1050 . . .

q
2(2k

2 � 4k +5)(2k
2 � 2k +1)

1

"(4,k)

p
18

1

"(5,k)

p
58
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How close can disjoint lattice polytopes be?

"(d, k) = min{d(P ,Q) : P ,Q disjoint lattice (d, k)-polytopes}

(d, k) 1 2 3 4 . . . k

1

"(2,k)

p
2

p
5

p
13

p
25 . . .

q
(k � 1)

2
+ k

2

1

"(3,k)

p
6

p
50

p
299

p
1050 . . .

q
2(2k

2 � 4k +5)(2k
2 � 2k +1)

1

"(4,k)

p
18

1

"(5,k)

p
58

Thanks

27


