ML-Based Intrusion Detection in Networks and Hosts

Maxime Puys

LIMOS/SIC/RS, Univ. Clermont Auvergne

January 16th, 2024

Who am I?

• Maxime Puys

- Ph.D. in Computer Science Security in 2018 from Verimag, Univ. Grenoble Alpes
- 2018 2023: Research Engineer at CEA-LETI, Grenoble
- Since 2023-10: Assistance Professor at IUT/LIMOS/SIC/RS
- E-mail: Maxime.Puys@uca.fr
- Research interests:
 - Cybersecurity of (I)IoT devices and networks
 - Cryptographic protocols

Internet of Things

• Physical objects with sensors/actuators

- Having processing ability, software, etc
- Connected and exchanging data over Internet or other networks.
- Eg. appliance, factory, health, wearables, etc

Critical IoT

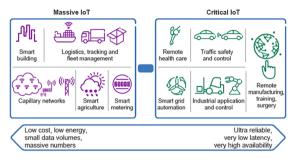


Figure: Two types of IoT: [Alq19]

Massive IoT:

- Target collected/computed data;
- Secrecy, privacy, integrity.

Critical IoT:

- Target physical process;
- Availability, safety

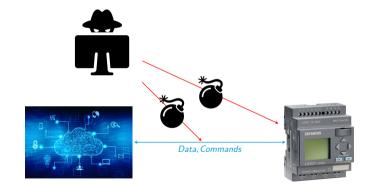
Overview

Data, Commands

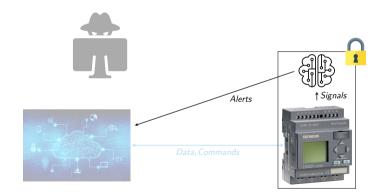
Maxime Puys

ML-Based Intrusion Detection in Networks and Hosts

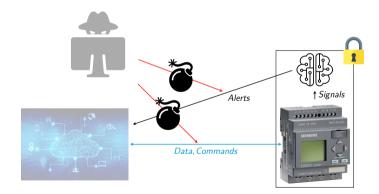
Overview



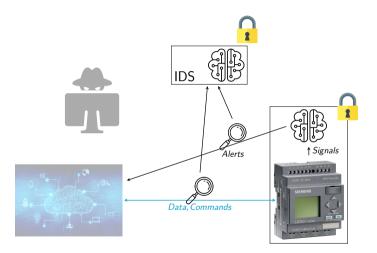
Overview: 1 - Embedded Host-IDS



Overview: 1 - Embedded Host-IDS



Overview: 2 - Network IDS



Outline

Previous Work: Embedded Host-IDS

• Define and embed intrusion detection system for critical devices.

Research Directions as part of LIMOS

• Optimization of the selection of security functions in networks and ensure their resilience.

Focus on On-Going Works: Network IDS

• Application of previous works on ML based host-IDS to network IDS

Embedded Host-IDS

Motivation

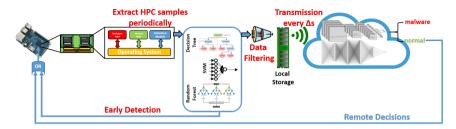
Hard to patch

- Hardware flaws often require hardware patch
- Sometimes really hard to retrieve devices:
 - Health devices, volcano captors, etc
- Software patches on HW flaws highly decrease performances

⇒ Often easier to monitor device for attack than patching

- Ph.D thesis N. Polychronou (CEA-LETI), 2019 2021
 - Goal: Detect microarchitectural attacks with limited performances

Local-Remote Approach

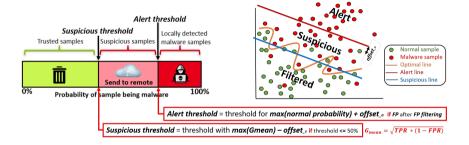


• Locally detect samples with very high probability of being malicious

- Minimize required bandwidth
- Only sends suspicious samples to a remote AI
 - Filter normal data to minimize bandwidth
- Provide a level of security even if network is down

[EuroS&P Workshops'23] N. F. Polychronou, P.-H. Thevenon, M. Puys, and V. Beroulle, 2023.

Two Level Threshold



[DSD'21] N. F. Polychronou, P.-H. Thevenon, M. Puys, and V. Beroulle, 2021.

Results with two Thresholds

	Single-Level Threshold	TPR	FPR
sl	LinearSVC	99.75%	1.63%
Simple MLs	Logistic Regression	99.74%	1.46%
	AdaBoost	99.70%	0.68%
MLs	LSTM7	72.99%	0.03%
Complex MLs	LSTM AutoEncoder7	92.41%	0.45%

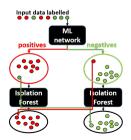
Two-Level Threshold	TPR	FPR
AdaBoost + LSTM7	73.09%	0.02%
AdaBoost + LSTM AutoEncoder7	92.66%	0.13%

Why Local+Remote?

- Minimal FPR compared to single-level threshold with simple ML
- TPR remains high enough because:
 - We only need one timing-window with high anomaly score to detect a malicious app
 - Malicious application do not execute only malicious actions in their whole execution

Reducing FPs

- 0.13% FP at 10ms sampling rate means 468 FP per hour!
- If the remote receives data before Δs , then trust its predictions
 - Most probably an attack overflown the local storage and we immediately transmitted the data before the expected Δs
- If the remote receives data at Δs , we must be careful for FPs
 - Most probably under normal operation
 - We need a double check



Two-Level Threshold	TPR	FPR
AdaBoost + LSTM AutoEncoder7	92.66%	0.13%
AdaBoost + LSTM AutoEncoder7 + Isolation Forest strategy	92.66%	~0%

My Research Directions

Research Directions

• **Problem Statement:** How to optimize the selection of security functions in networks and <u>ensure their resilience</u> in the event of attacks?

- Motivation : Security essential but not across all areas:
 - ▲ Too much defense: overhead, finance, frugality
 - Need cysec AND domain specific risk analyses [FPS'17]
 - Goal: apply countermeasures where it is important and analyze relations between countermeasures

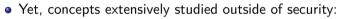
- Optimization of security function selection in networks.
- Olympice Network resilience.

Axis 1: Optimization of Security Function Selection in Networks

- From risk analyses, derive a network heat-map:
 - Identify points to protect and vulnerability paths.
 - Orchestrate countermeasures.
 - Existing state-of-the-art but lacks safety aspects.
- Characterize countermeasures:
 - Assess their impact concerning risk analysis.
 - Evaluate costs (in overhead, finance, consumption, etc).
- Employ machine learning to:
 - **Fine-tune** countermeasure parameters (e.g., ML-based IDS).
 - Utilize GANs / generative AI for discovering needs and proposing countermeasures.

Axis 2: Network Resilience

- Many works focus on detection and protection;
- Few on response and recovery.



Alternative paths, ring or mesh topologies, check-pointing.

• Idea:

- Validate the gap between existing solutions and their use in security contexts.
- E.g., HSR/PRP protocols, network segmentation into 62443 zones and conduits, redeployment of business/cyber functionalities.

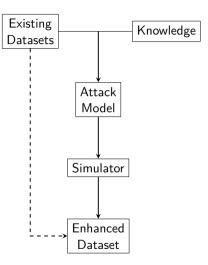
On-Going Work: ML-based Network IDS

Context and Motivation

- On-going work with G. CHALHOUB
- $\bullet~2~\text{M2}$ internships +~1~Ph.D to begin
- Strong SOTA on ML-based Network IDS
- Current challenges:
 - Feature selection, link between features and response, cross-dataset features, time-invariant feature importance, etc
- Focus on datasets:
 - Current datasets: old, content-specific, limited in variety, heterogeneous features.
 - Most IDS: Trained and tested on a specific dataset
 - Data are analyzed without domain specific knowledge

Idea(s)

- Evaluate existing datasets (features, contents, etc)
- Cut, merge, different datasets for broader use cases
- Train IDS on one dataset and test it on another (more realistic)
- Make use of simulation to generate new data:
 - Requires fine knowledge of attacks
 - Possible to compare features from simulated data with real datasets to check for mistakes.



Conclusion

A CANNER FOR THE SAME AND A CANNER FOR THE S

unital nodel

Maxime Puys

Thanks for your attention!

References I

- Salman Alqahtani, *Performance evaluation of a priority-based resource allocation scheme for multiclass services in iot*, International Journal of Communication Systems **32** (2019), no. 18, e4151.
- Daniel Gruss, Clémentine Maurice, and Stefan Mangard, Rowhammer.js: A remote software-induced fault attack in javascript, Detection of Intrusions and Malware, and Vulnerability Assessment 13th International Conference, DIMVA 2016, San Sebastián, Spain, July 7-8, 2016, Proceedings (Juan Caballero, Urko Zurutuza, and Ricardo J. Rodríguez, eds.), Lecture Notes in Computer Science, vol. 9721, Springer, Springer, 2016, pp. 300–321.
- Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al., *Spectre attacks: Exploiting speculative execution*, Communications of the ACM **63** (2020), no. 7, 93–101.

References II

- Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg, *Meltdown: Reading kernel memory from user space*, 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018 (William Enck and Adrienne Porter Felt, eds.), USENIX Association, 2018, pp. 973–990.
- Zhenyu Ning and Fengwei Zhang, Understanding the security of ARM debugging features, 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019, IEEE, 2019, pp. 602–619.
- Sofiane Takarabt, *Cache-timing attacks still threaten iot devices*, 2019, pp. 13–30.
- Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and Y. Thomas Hou, *Truspy: Cache side-channel information leakage from the secure world on ARM devices*, IACR Cryptol. ePrint Arch. **2016** (2016), 980.

Related Works

Detection mechanism	Attacks	Accuracy	F-score	FPR or Precision	Overhead	System	Local or Remote
Mushtaq et al. [19] Logistic Regression (No Load)	Flush+Reload	99.51%		0.48% FPR	0.94%		Local
Mushtaq et al. [19] SVM (No Load)	Flush+Reload	98.82%		0.397% FPR	1.29%		Local
Mushtaq et al. [19] Logistic Regression (No Load)	Flush+Flush	91.73%		0% FPR	1.10%		Local
Mushtaq et al. [19] SVM (No Load)	Flush+Flush	97.42%		0% FPR	0.79%		Local
WHISPER [20] Ensemble Learning (DT, RF and SVM) One model per malware (No Load)	CacheSCA (F+F, F+R, P+P), Spectre, Meltdown	>97.05%			<8%		Local
FortuneTeller [21] LSTM	CacheSCA (F+F, F+R, P+P), Spectre, Meltdown, Rowhammer, Foreshadow		99.70%	0.125% FPR	3.50%		Local
Wei et al. [23] OC-SVM	Prime + Probe, Spectre, Rowhammer, Evasive	<98.63%		<0.5% FPR	N/A		?
Wei et al. [23] LSTM	Prime + Probe, Spectre, Rowhammer, Evasive	<99.06%		<0.5% FPR	N/A		?
Kuruvila et al. [24] Random Forest	Flush + Flush, Spectre, PNScan, Meltdown, Rowhammer, BashLite,	89.90%	89.91%	89.25% Precision	<1.22%		Local
Wang et al. [25] MPL	CacheCSA (F+F, F+R, P+P), Spectre?	<98,9%	<97%	5.3% FPR	<3.2%		?
Wang et al. [25] Logistic Regression	CacheCSA (F+F, F+R, P+P), Spectre?	<98.9%	91.90%	14.9% FPR	<3.23%		?
Ours (Full Load) AdaBoost + LSTM AutoEncoder7	CacheCSA(F+F, F+R, E+R, P+P), Meltdown, Spectre, Rowhammer, <mark>Evasive</mark>	98.75%	96.19%	≈0% FPR	0.80%		Local + Remote

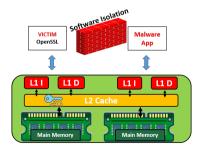
Microarchitectural Attacks

Hardware flaws present on electronic components:

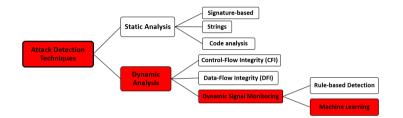
- Traditionally requiring physical access to the device
 - Laser fault injection, Electromagnetic Emissions Side-Channel attacks
- Modern architectures become more complex

Now possible to **exploit hardware** vuln. **using software code** and without physical access:

 Rowhammer [GMM16], Spectre [KHF⁺20], Meltdown [LSG⁺18], Cache Side Channel Attacks (CacheSCA) [Tak19], ClkScrew [NZ19], debug interface [ZSS⁺16]



Detection Techniques



Use of Machine Learning (ML)

System information as inputs to the ML:

- Binary Code
- Memory dump
- System calls (SYSCALLs)
- Hardware Performance Counters (HPCs)

Results with two Thresholds

Local ML	Under normal execution		
(filtering only)	data send per minute	filtering percentage	
AdaBoost[LogReg]	39kb	99.32%	

Observations

- Normal data do not exceed a certain value
- Explosion of data under attack

Our solution for memory and detection time optimization:

- Set local storage size to max normal
- If local storage overflows before Δs, then immediately transmit to remote system