

# Study and design of interpretable models for detecting anomalies in spectral data stream: Application to the contamination of vacuum process chambers for microelectronics.

N. Rojas Varela, J. Ah-Pine, E. Mephu Nguifo



#### INTRODUCTION

The continuous flux of data, known as data streams, has become a vital source of big data presented in various industries. Using **spectral data** in a data stream typically implies analyzing the spectrum of light emitted or absorbed by materials in real time.

**Data stream anomaly detection**, involves the process of identifying unusual patterns or events in the continuous flow of data.

Some **challenges** include:

- Full dataset not available in advance.
- High velocity of streams.
- Evolution of data characteristics over time.

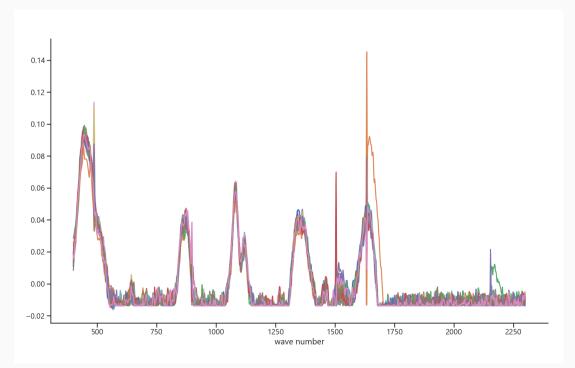


Fig 1: Example of Spectral data.

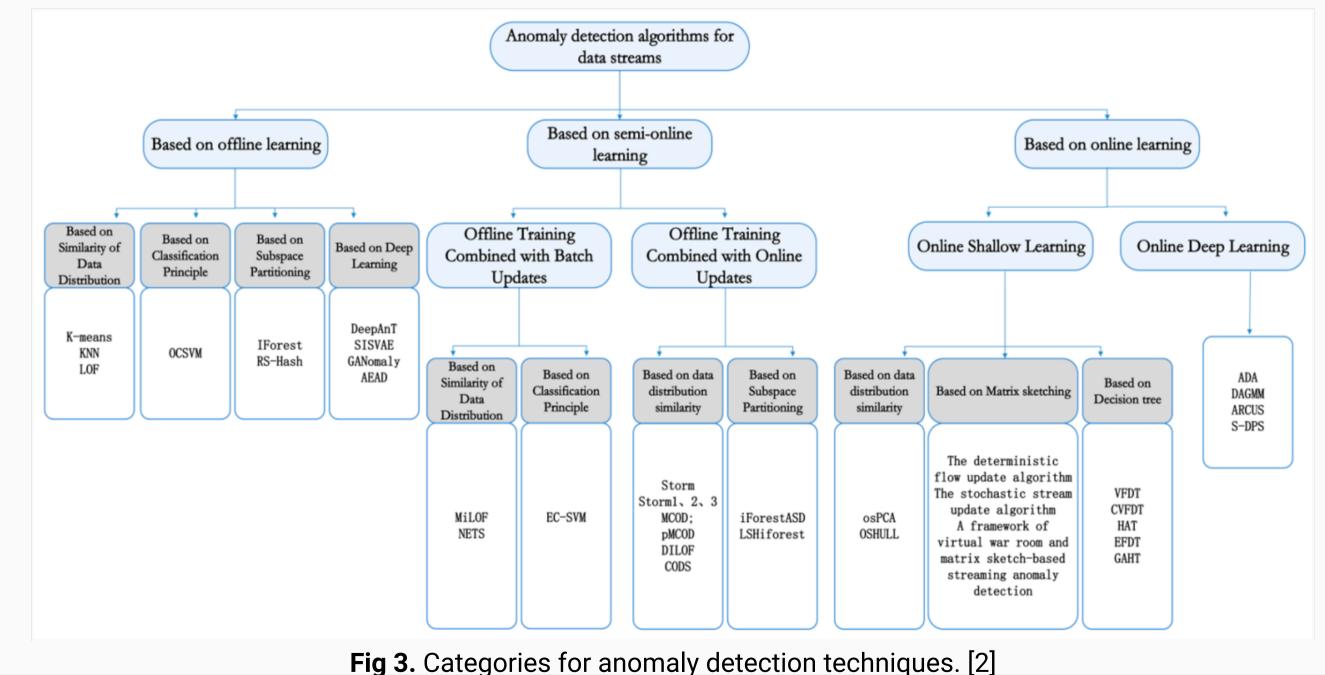


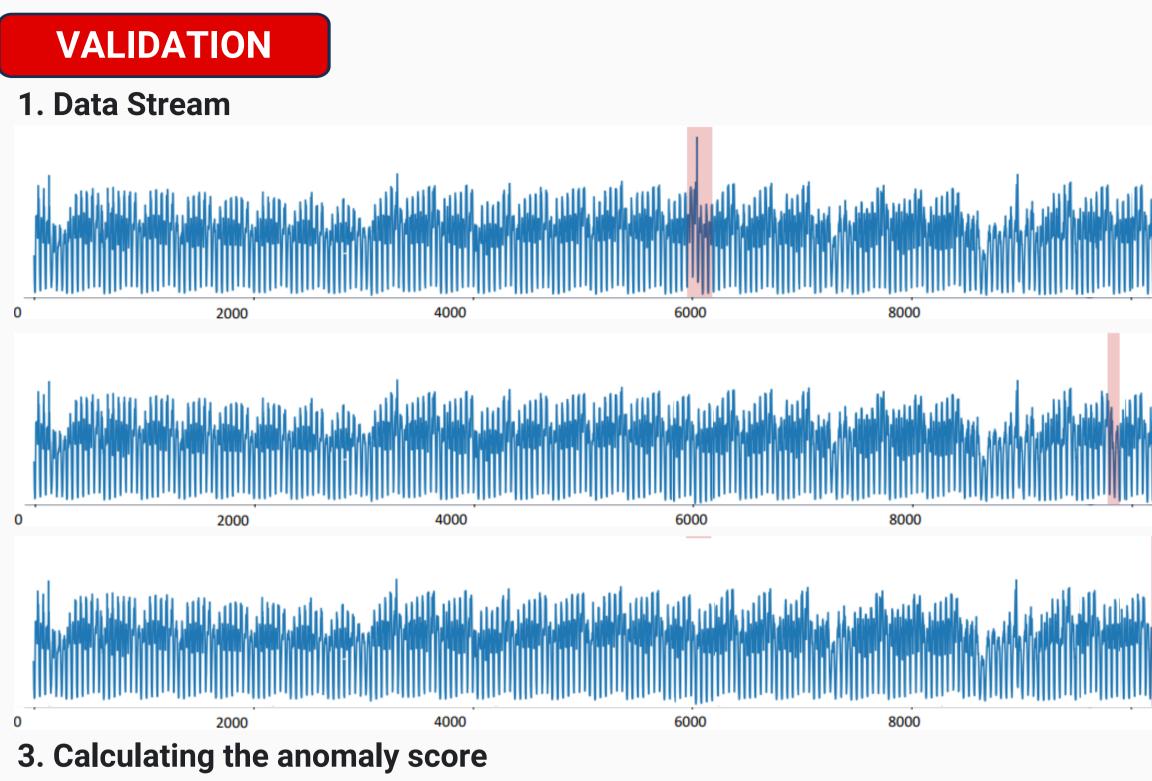
Fig 2: Example of Data Stream. [1]

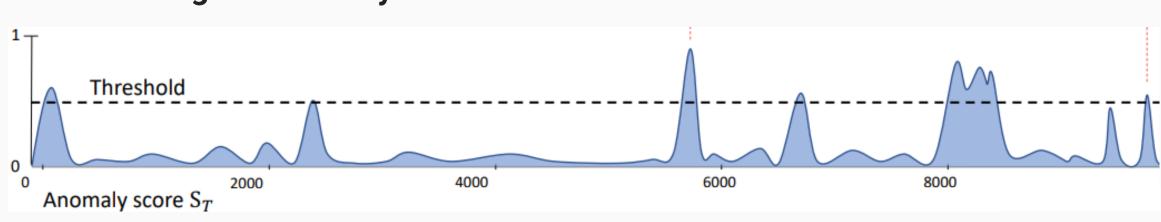
### **TYPE OF METHODS**

Categories for algorithms based on:

- Offline learning: use historical data to learn a model that indicates the anomaly level of the points.
- Semi-online learning: the algorithms perform offline learning on a part of the data to obtain a model, then applies real-time anomaly detection on the subsequent data streams.
- Online learning: uses incremental learning algorithms to continuously update the model to adapt to changes in the data stream.















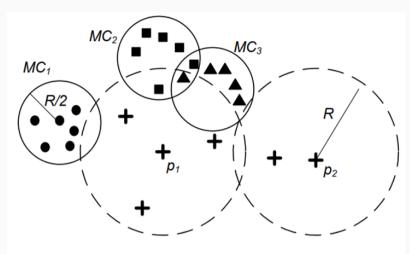


Fig 4. Main ideas MCOD. [4]

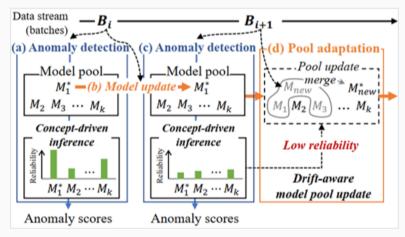
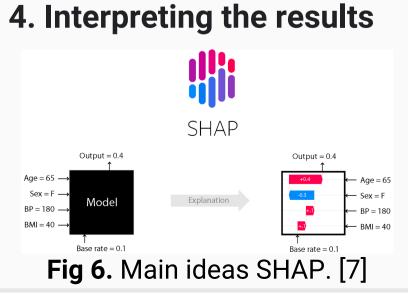


Fig 5. Main ideas ARCUS. [5]



#### REFERENCES

- 1. Florentin Jiechieu et al. (2024) SEDAF : Prototype d'un Système Explicable de Détection d'Anomalies dans les Flux de Données. Revue des Nouvelles Technologies de l'Information, EGC, Dijon, France, pp. 441-448.
- 2. Lu, T., Wang, L., & Zhao, X. (2023). Review of anomaly detection algorithms for data streams. Applied Sciences, 13(10), 6353.
- 3. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation Forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 15–19 December 2008; IEEE: New York, NY, USA, 2008; pp. 413–422.
- 4. Kontaki, M., Gounaris, A., Papadopoulos, A. N., Tsichlas, K., & Manolopoulos, Y. (2011, April). Continuous monitoring of distance-based outliers over data streams. In 2011 IEEE 27th International Conference on Data Engineering (pp. 135-146). IEEE
- 5. Yoon, S., Lee, Y., Lee, J. G., & Lee, B. S. (2022, August). Adaptive model pooling for online deep anomalydetection from a complexevolving data stream. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 2347-2357).
- 6. Boniol, P., Paparizzos, J., & Palpanas, T. (2023). New Trends in Time Series Anomaly Detection. International Conference on Extending Database Technology.
- 7. Strumbelj, E., & Kononenko, I. (2014). Explaining prediction models and individual predictions with feature contributions. Knowledge and information systems, 41, 647-665.

## Thank you !

N. Rojas Varela, J. Ah-Pine, E. Mephu Nguifo