

Image Analysis and Object Detection Using Deep Learning

Billal MOKHTARI (Billal.MOKHTARI@etu.uca.fr)

Master 2 International in Computer Science

Supervisor: Prof. Vincent BARRA Email: Vincent.BARRA@uca.fr

ISIMA - Clermont Auvergne University 2024

 QQ

メロメメ 倒 メメ きょくきょう

Kロ → K個 → Kミ → Kミ → ニミー の&@

Context

- ▶ The project is founded by ANR (Agence Nationale de la Recherche).
- ▶ Detect objects and background contexts in a dataset of 177 images taken from IOM (International Organization for Migration) using panoptic segmentation methods.
- ▶ Graph Analysis using statistical methods such as Confidence Intervals.
- \blacktriangleright Extract important features from the graph.
- ▶ Use Graph based Neural Networks to cluster the nodes.
- ▶ Image and Text Semantic Analysis based on Siamese Networks.

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (º

PointRend

Figure: High Level Architecture of PointRend Approach

 299

K ロ ト K 個 ト K 差 ト K 差 ト …

Graph Convolutional Networks

Figure: Graph Convolutional Networks $G = (V, E)$

 $H^{(k+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(k)} W^{(k)} \right)$

$$
\blacktriangleright A = A + I_m
$$

$$
\blacktriangleright \widetilde{D_{ii}} = \sum_j \widetilde{A}_{ij}
$$

- \blacktriangleright $H^{(k)}$: Node features at time *k*
- \blacktriangleright *A* : Adjacency matrix of the Graph *G*
- \blacktriangleright \widetilde{A} : Adjacency matrix of the Graph *G*, including the self relationships
- \triangleright \widetilde{D} : Diagonal matrix of degree of each node in *G*
- ▶ *σ* : Certain activation function
- \blacktriangleright *I_m* : Identity matrix of size $m \times m$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 Ω

implemented

 QQ

イロト イ部 トイミト イミト

Active Learning

No algorithm can be 100% accurate. That says, there exist **false positives (FP)** or **false negatives (FN)**. The solution consists of

- ▶ Active Learning approach.
- \blacktriangleright The user will have access to the dataset *X* and associated labels \widehat{Y} .
- ▶ The user associates new labels Y^* manually to the objects as a ground truth.
- ▶ We want that $FN + FP \approx 0$
- ▶ **Objective:** $Y^* = \arg \min_{\hat{Y}} (FN + FP)$

 2990

メロトメ 御 トメ 差 トメ 差 トー 差

- ▶ $\deg(o_j) = |\mathcal{N}(o_j)| \in \mathcal{D}_{obj} \subset \mathbb{N}$ the degree of node o_j
- ▶ freq $(o_j) = \sum_{i=1}^m 1_{o_j \in x^{(i)}} \in \mathcal{F}_{obj} \subset \mathbb{R}$ the frequency of occurrence of object o_j in the whole dataset $X \in \mathbb{R}^{m \times n_w \times n_h \times n_c}$ where m is the number of examples, $n_w \times n_h \times n_c$ is the shape of each image $x^{(i)}$, $n_c = 3 + |V_{obj}|$ in which 3 refers to the number of channels in RGB and *vertVobj|* means that for every channel is

assigned to a certain object and $1_{\text{condition}} = \begin{cases} 1 & \text{if } \text{ condition} \\ 0 & \text{otherwise} \end{cases}$ 0 otherwise .

▶ Closeness Centrality Measure: $C(o_j) = \frac{1}{\sum_{i=1}^{|V_{obj}|} d(o_i, o_j)}$ where $d(x, y) \in C_{obj} \subset]0; 1]$ calculates the length of shortest path between *x* and *y*.

$$
\blacktriangleright \text{ Each object node } o_j \in \mathcal{T}_{obj} \times \mathcal{F}_{obj} \times \mathcal{D}_{obj} \times \mathcal{C}_{obj}
$$

▶ e_{ij}^{obj} = freq(o_i, o_j) ∈ E_{obj} with freq(o_i, o_j) = $\sum_{k=1}^{m} \mathbb{1}_{o_i \in x^{(k)} \wedge o_j \in x^{(k)}}$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

Object Co-Occurrence Graph

Figure: Illustration of Object Co-Occurrence **Graph**

Figure: Object Co-Occurrence Graph using **GraphXR**

メロトメ 伊 トメ ミトメ ミト

 299

Panoptic Segmentation

Figure: Image 1 Figure: Image 2 Figure: Image 3 Figure: Image 4

Figure: Image 5 Figure: Image 6 Figure: Image 7 Figure: Image 8

Image Analysis Frequency

Figure: Object frquency

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

Table: Frequency Statistics

重 299

Image Analysis Degree

Figure: Node degrees Figure: Node degrees grouped by type

Table: Degree Statistics

メロメ メ御 メメ ヨメ メヨメ É 299

Image Analysis Closeness Centrality

Figure: Closeness Centrality of each node in the graph *Gobj*

Figure: Closeness Centrality of each node in the graph *Gobj* grouped by type

Figure: Closeness Centrality distribution

∍

 Ω

Object and Background Importance

Table: Top 10 Objects and Backgrounds According to Different Metrics

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q Q ·

Object and Background Importance

- ▶ **{person, chair, sand, dirt}** are frequent, with highest degrees and highest closeness centrality.
- ▶ **bus** is frequent but does not have the highest degree neither the highest closeness.
- ▶ **table** is among a list of 10 objects with highest degree but it is not frequent neither has the highest closeness centrality.

K ロ X (日) X (日)

Filtering Algorithm based on Confidence Intervals

Table: Confidence Intervals using $\alpha = 1\%$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Image Clustering Based on Node and Edge Message Passing using Graph Neural Networks I **Notation**

Table: Notation

Image Clustering Based on Node and Edge Message Passing using Graph Neural Networks II **Notation**

^h Adjacency matrix of image representation graph at *k*-th layer

j-th layer of matrix $A_h^{(k)}$, $1 \le j \le l_k$

^h Activation function at the *k*-th layer of the neural network that will process *G^h* Activation function at the *k*-th layer of the neural network that will process G_e Parametric aggregator across the *j*-th dimension of the matrix *A*.

$$
\begin{array}{cccc}\psi_j & A\longrightarrow & \psi_j(A)\\ & & \mathbb{E}^{\times_{i=1}^N N_i} \longrightarrow & \mathbb{E}^{\times_{i=1}^{j-1} N_i \times_{i=j+1}^N N_i}\end{array}
$$

 $A_h^{(k)}$

 $\phi_e^{(k)}$

 $\psi_j(A)$

 $A_h^{(k) < j>}$
 $\phi_h^{(k)}$

Representation of image i in the k -th layer of the GCN Transformation applied on the images to get embeddings at *k*-th iteration *^k* Representation of the relationship between images *i* and *j* in the *k*-th layer of the GCN $\mathcal{A}_k^{(k)}$ Coefficient at the *i*-th row and *j*-th column of $A_k^{(k)}$

Image Clustering Based on Node-Edge Duality Message Passing using Graph Attention Networks I Method

Figure: Primal to Dual Transformation

▶ Goal: find the reduction *R* such that $G_h = (V_h, E_h) \stackrel{R}{\longrightarrow} G_e = (V_e, E_e)$

 $V_e = E_h$ and $(e_{ij}, e_{kl}) = x^{(p)} \in V_e$ if $\{i,j\} \cap \{k,l\} = p \neq \emptyset$

Image Clustering Based on Node-Edge Duality Message Passing using Graph Attention Networks I Method

Figure: Method overview

▶ $H^{(k+1)} = \phi_h^{(k)} \left(\psi_3^h \left(A_h^{(k)} \right) f^{(k)} \left(H^{(k)} \right) \right)$ \blacktriangleright $F^{(k+1)}$ $\frac{(k+1)}{(k)}$ = $\overline{\phi}_e^{(k)}\left(\psi_3^e\left(A_e^{(k+1)}\right)E^{(k)}W^{(k)}\right)\in$ $\mathbb{R}^{n_r \times l_{k+1}}$ ▶ $\psi_3^h(A_h^{(k)}) = W_h * \sum_{j=1}^3 A_h^{(k) \le j>}$ ► $\psi_3^e(A_e^{(k)}) = W_e * \sum_{j=1}^3 A_e^{(k) < j>}$ ▶ $H^{(0)} = X \in \mathbb{R}^{m \times n_w \times n_h \times n_c}$ ▶ $E^{(0)} \in \{0, 1\}^{n_r \times l_0}$ ▶ $A_h^{(k)} \in \mathbb{R}^{m \times m \times l_k}, A_e^{(k)} \in \mathbb{R}^{n_r \times n_r \times d_{k+1}}$ ▶ $A_h^{(0)} \in \{0, 1\}^{m \times m \times l_0}$ ▶ $W_h \in \mathbb{R}^{m \times m}, W_e \in \mathbb{R}^{n_r \times n_r}$ $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ Ω

Image Clustering Based on Node-Edge Duality Message Passing using Graph Attention Networks Algorithm

Algorithm Image clustering based on message passing between nodes and multi-valued edges using GCNs

Data: $G_h = (V_h, E_h)$ **Result:** communities *{c*1*, . . . , ^cC}* $\mathbf{procedure} \ \mathbf{DUALGRAPH}(G_h = (\widetilde{V}_h, E_h))$ $V_e \leftarrow E_h$ $(e_{ij}, e_{kl}) \leftarrow x^{(p)}$ if $\{i, j\} \cap \{k, l\} = p \neq \emptyset$ with $p \in \{i, j, k, l\}$ *return* $G_e = (V_e, E_e)$ **end procedure** $G_e = (V_e, E_e) \leftarrow dualGraph(G_h = (V_h, E_h))$ **for** $k \leftarrow 0$ *to L* **do** Compute $H^{(k+1)}$ $E_e \leftarrow H^{(k+1)}$ \triangleright Update the dual graph edges with primal graph nodes at step $k+1$ Compute $E^{(k+1)}$ *E^h ←− E* (*k*+1) *▷* Update the primal graph edges with dual graph nodes at step *k* + 1 **end** ${c_1, \ldots, c_C} \leftarrow \text{clustering}(V_h^{(L)})$ *return* $\{c_1, \ldots, c_C\}$

Image Clustering Based on Node-Edge Duality Message Passing using Graph Attention Networks Clustering

Figure: Projection of the last layer *L* on a *d^L* -plan (multi-dimensional plan with *d^L* dimensions)

イロト イ部 トイミト イミト QQ

Thank you for your attention !

