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Data Quality

“Fitness for the task at hand” → Context dependent, difficult to generalize

Few data quality  concepts:
accuracy, completeness, timeliness, and consistency

However, there is no unified measure for these concepts

Plenty of work on monitoring data indicators, identifying data errors, and data 
cleaning but no proposition of a unified metric yet, even for families of tasks such as 

classification tasks.

Data Quality
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Structured, numeric data for classification tasks 

No metadata, 

No expert knowledge

Context of Our Work
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Concepts Behind the Metric

Example of data 
quality issues not 

identified by 
accuracy score

Accuracy as a function of the 
percentage of missing values in datasets
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Concepts Behind the Metric

qa= max(qa,1, qa,2)

❖ qa,1: Accuracy with regards to the accuracy of a random classifier 

❖ qa,2: Variations of accuracy when 5% of errors are injected in data

Computed over 12 classification models 
(logistic regression, k-nearest neighbors, decision tree, random forest, ada boost, naive bayes, xgboost, 

support vector classification, gaussian process, multi-layer perceptron, linear model with stochastic gradient 
descent, gradient boosting)

Considering 3 errors: missing values, outliers, and fuzzing injected with a random 
uniform distribution

0 ≤ qa(D) ≤ 1

qa(D) = 0  best data quality

qa(D) = 1  worst data quality
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Concepts Behind the Metric
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Metric Interpretation

Empirical data quality thresholds based on 
manual data quality evaluation:

❖ 0 ≤ qa(D) ≤ 0.3: Good 

❖ 0.3 <qa(D) ≤ 0.6: Medium

❖ 0.6 < qa(D) ≤ 1: Bad

qa(D) as a function of the percentage of errors 
injected in datasets

M
is

si
ng

 v
al

ue
s

O
ut

lie
rs



Evaluation of the Metric
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Start with 5 datasets,
Create 150 datasets by artificially deteriorating datasets through the injection 

of missing values, outliers, and fuzzing. 
We inject these errors separately, in a random uniform way, in 5% increments 

from 0% to 50%.

Empirical Setup for Evaluation

Name Objective # Samples

Statlog Predict if a credit risk is good or bad (german credit data) 959

Spambase Predict if emails are spam 4 601

Abalone Predict if Abalone shells have 8 or less rings from diverse 
measures 4 177

Heart Disease Predict whether or not patients have heart diseases 297

Dry Beans Predict the type of dry beans from descriptive and 
contextual data 13 611
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Evaluation

qa(D) as a function of the percentage of 
missing valuesWe compare interpretations of qawith manual 

evaluations of data quality for the datasets:
❖ qa was correct for 83% of datasets
❖ When qa was incorrect it was close to 

interpretation thresholds

qa correctly quantify data quality levels in most 
cases,  allows comparison between datasets

qa does not take into account class imbalance, 
more details are needed close to thresholds

In additional work we showed that qa can be computed without a trusted 
test set through the mean of 30 resamplings



Conclusion and Future Work
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Conclusion and Future Work

Conclusion:
❖ Proposed a data quality metric qa
❖ Proposed an interpretation of qa
❖ Evaluation showed that qa characterize data quality correctly in most 

cases

Future Work:
❖ Extension to other performance evaluations (e.g. F1 score)
❖ Work on measuring data repairability
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