## Missingness-aware and Sample-based Query Processing

#### PhD Student: Moulay Idris DAOUADI

#### LIMOS, CNRS, Clermont Auvergne University

#### April 11, 2024



## Table of Contents

### Introduction

• Database with missing values (MVs)

### 2 Definitions (preliminaries)

- 3 Problem statement
- Perspective and future work

## Introduction

M.I DAOUADI - F. TOUMANI

April 11, 2024

3

イロト 不聞 とくほとくほど

- Not reported values for some variables in a relational DB.
- Usually noted by 'na' (not available).
- Usually appears as a result of:
  - Data entry errors: Human factors (deletion)
  - System issues: Glitches (technical errors)
  - Non-response in surveys: Silence (respondent choice)
  - Data transformation and integration issues: Mismatch (variable disparities)
  - Natural causes: Environment (sensor disruptions)

| employee       | Name  | Age | Salary | Phone    |
|----------------|-------|-----|--------|----------|
| $t_1$          | John  | 25  | 20K    | 555-1234 |
| t2             | Jane  | 48  | na     | 555-5678 |
| t3             | Mike  | 39  | 55K    | na       |
| t <sub>4</sub> | Emily | 41  | na     | 555-4321 |
| t5             | Chris | 60  | 60K    | 555-8765 |

There are different types of nulls

- non-available values (exists but unknown), e.g: Jane's salary
- non-applicable values, e.g: Mike doesn't have a phone
- $\Rightarrow$  in our work we consider the first case of null only.
  - we can overcome the second case by decomposing the relation into multiple relations.

| tid            | Name  | Age | Salary |
|----------------|-------|-----|--------|
| $t_1$          | John  | 25  | 20K    |
| t <sub>2</sub> | Jane  | 48  | na     |
| t <sub>3</sub> | Mike  | 39  | 55K    |
| t <sub>4</sub> | Emily | 41  | na     |
| $t_5$          | Chris | 60  | 60K    |

| 1 none   |
|----------|
| 555-1234 |
| 555-5678 |
| 555-4321 |
| 555-8765 |
|          |

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

| employee       | Name  | Age | Salary |
|----------------|-------|-----|--------|
| $t_1$          | John  | na  | 20K    |
| t2             | Jane  | na  | na     |
| t3             | Mike  | 41  | 55K    |
| t <sub>4</sub> | Emily | 51  | na     |
| t5             | Chris | na  | 60K    |

- SQL uses *null* instead of *na*.
- Consider the following two queries:
  - **Q**1: SELECT SUM(Salary) FROM employee WHERE Age  $\leq$  41
  - Q2: SELECT SUM(Salary) FROM employee
- The QA:
  - QA1 = 55K
  - **2** QA2 = 20K + 55K + 60K = 135K
- $\Rightarrow$  SQL might exclude tuples with NULL values in filtering (three valued logic [1]).
- $\Rightarrow$  SQL always ignores the null while dealing with aggregate queries.

## Introduction

Three valued logic

| р       | q       | $p \lor q$ | $p \wedge q$ | p = q   |
|---------|---------|------------|--------------|---------|
|         |         |            |              |         |
| True    | True    | True       | True         | True    |
| True    | False   | True       | False        | False   |
| True    | Unknown | True       | Unknown      | Unknown |
| False   | True    | True       | False        | False   |
| False   | False   | False      | False        | True    |
| False   | Unknown | Unknown    | False        | Unknown |
| Unknown | True    | True       | Unknown      | Unknown |
| Unknown | False   | Unknown    | False        | Unknown |
| Unknown | Unknown | Unknown    | Unknown      | Unknown |

| р       | $\neg p$ |
|---------|----------|
| True    | False    |
| False   | True     |
| Unknown | Unknown  |

æ

・ロト ・回ト ・ヨト ・ヨト

#### Deletion:

- Exclude from the analysis the rows with missing values corresponding to the variables of interests [2].
- Deletion is performed with the assumption that the missing data occurs randomly and does not adhere to a specific pattern.
- Shows biased statistical results when:
  - high rate of missing data.
  - A non-random pattern of missingness.
- Two known methods: pairwise deletion, listwise deletion.
- Listwise deletion:

| employee       | Name  | Age | Salary |
|----------------|-------|-----|--------|
| $t_1$          | John  | na  | 20K    |
| t2             | Jane  | na  | na     |
| t3             | Mike  | 41  | 55K    |
| t <sub>4</sub> | Emily | 51  | na     |
| $t_5$          | Chris | na  | 60K    |

• SELECT SUM(Salary) FROM employee

∃ ► < ∃ ►</p>

#### Deletion:

- Exclude from the analysis the rows with missing values corresponding to the variables of interests [2].
- Deletion is performed with the assumption that the missing data occurs randomly and does not adhere to a specific pattern.
- Shows biased statistical results when:
  - high rate of missing data.
  - A non-random pattern of missingness.
- Two known methods: pairwise deletion, listwise deletion.
- Listwise deletion:

| employee       | Name             | Age           | Salary         |
|----------------|------------------|---------------|----------------|
| $t_1$          | John             | <del>na</del> | <del>20K</del> |
| t2             | Jane             | <del>na</del> | na             |
| t <sub>3</sub> | Mike             | 41            | 55K            |
| t <sub>4</sub> | Emily            | <del>51</del> | na             |
| $t_5$          | <del>Chris</del> | <del>na</del> | <del>60K</del> |

SELECT SUM(Salary) FROM employee

#### Deletion:

- Exclude from the analysis the rows with missing values corresponding to the variables of interests [2].
- Deletion is performed with the assumption that the missing data occurs randomly and does not adhere to a specific pattern.
- Shows biased statistical results when:
  - high rate of missing data.
  - A non-random pattern of missingness.
- Two known methods: pairwise deletion, listwise deletion.
- Pairwise deletion:

| employee       | Name  | Age           | Salary |
|----------------|-------|---------------|--------|
| $t_1$          | John  | na            | 20K    |
| t2             | Jane  | na            | na     |
| t <sub>3</sub> | Mike  | 41            | 55K    |
| t <sub>4</sub> | Emily | <del>51</del> | na     |
| $t_5$          | Chris | na            | 60K    |

• SELECT SUM(Salary) FROM employee

- Imputation:
  - Replacing missing values with substituted values.
  - The quality of the analysis depends on the chosen imputation method.
  - There are several different approaches to imputing missing values:
    - Median, mean, K-nearest neighbors (kNN), regression imputation, multiple imputation...

| employee       | Name  | Age | Salary |
|----------------|-------|-----|--------|
| $t_1$          | John  | 46  | 20K    |
| t2             | Jane  | 46  | 45K    |
| t3             | Mike  | 41  | 55K    |
| t <sub>4</sub> | Emily | 51  | 45K    |
| t5             | Chris | 46  | 60K    |

Table: e.g: imputation using the mean

#### Missingness mechanism:

- We can model missing values (MVs) using missingness mechanism (MM).
- A MM describes why and how there are MVs, and under what conditions.
- We identify 3 classes for MM (Missing Completely At Random, Missing At Random and Missing Not At Random) [5].

- Missing Completely At Random (MCAR): Every record and attribute share a fixed uniform probability that the value is 'na'
  - E.g. going down the column and throwing a dice if the dice value is 1 we record '*na*'.
- Missing At Random (MAR): Missingness of an attribute value depends randomly on other non-missing attribute values
  - E.g: the presence of Missing Values (MVs) in salary is based upon the values assumed by the fully observed variable Age. To illustrate, consider the scenario where we roll a die, but now only when Age is between 50 and 60. If the die lands on 1, we record '*na*' for Salary.

#### Missing Not At Random (MNAR): None of the above

- Missing Depending on Variable Itself: the probability of a variable having a missing value is solely determined by the variable itself.
  - E.g: Those individuals with the highest salaries are more inclined to keep it private.
- Missing Depending on partially observed variable: the presence of missing values in the outcome variable is influenced by another variable that includes missing values
  - E.g: Elderly individuals are more prone to keep their income private (with age being a factor contributing to the missingness of income information). Nevertheless, the variable age itself also exhibits some missing values (as certain individuals did not report their ages).
- [3] used the missingness graph (another way to represent MM) to recover joint/conditional distribution from an incomplete database.

By having

- An incomplete DB
- the MMs.
- A query Q
- $\Rightarrow\,$  how can we provide a better QA using the MMs?

Image: A matching of the second se

э

- Missingness graph
- Probabilistic database PDB
- Block independent probabilistic database
- Semantics of query answering on PDB

Missingness graph

- We can describe MMs through m-graph (MG) [4].
- Lets consider the observed database  $D^*$ ,

| employee <sup>+</sup> | Age | Salary |
|-----------------------|-----|--------|
| t1                    | 25  | 20K    |
| t <sub>2</sub>        | 48  | na     |
| t <sub>3</sub>        | 39  | 55K    |
| $t_4$                 | 41  | na     |
| $t_5$                 | 60  | 60K    |

Table: D\*

Missingness graph

- We can describe MMs through m-graph (MG) [4].
- Lets consider the observed database  $D^*$ ,

| employee <sup>+</sup> | Age <sup>o</sup> | Salary* |
|-----------------------|------------------|---------|
| t1                    | 25               | 20K     |
| t <sub>2</sub>        | 48               | na      |
| t <sub>3</sub>        | 39               | 55K     |
| $t_4$                 | 41               | na      |
| t5                    | 60               | 60K     |

Table:  $D^*$ 

Missingness graph

- We can describe MMs through m-graph (MG) [4].
- Lets consider the observed database  $D^*$ , and its complete version  $D^{om}$

| $employee^+$   | Age <sup>o</sup> | Salary <sup>m</sup> |
|----------------|------------------|---------------------|
| t1             | 25               | 20K                 |
| t <sub>2</sub> | 48               | 60K                 |
| t3             | 39               | 55K                 |
| t <sub>4</sub> | 41               | 70K                 |
| t5             | 60               | 60K                 |

Table: D<sup>om</sup>

| employee <sup>+</sup> | Age <sup>o</sup> | Salary* |
|-----------------------|------------------|---------|
| $t_1$                 | 25               | 20K     |
| t2                    | 48               | na      |
| t3                    | 39               | 55K     |
| t <sub>4</sub>        | 41               | na      |
| $t_5$                 | 60               | 60K     |

Table:  $D^*$ 

Missingness graph

- We can describe MMs through m-graph (MG) [4].
- Lets consider the observed database  $D^*$ , and its complete version  $D^{om}$

| $employee^+$ | Age <sup>o</sup> | Salary <sup>m</sup> |
|--------------|------------------|---------------------|
| t1           | 25               | 20K                 |
| t2           | 48               | 60K                 |
| t3           | 39               | 55K                 |
| t4           | 41               | 70K                 |
| t5           | 60               | 60K                 |

| employee <sup>+</sup> | Age <sup>o</sup> | Salary* | R <sub>salary</sub> |
|-----------------------|------------------|---------|---------------------|
| $t_1$                 | 25               | 20K     | 0                   |
| t2                    | 48               | na      | 1                   |
| t3                    | 39               | 55K     | 0                   |
| $t_4$                 | 41               | na      | 1                   |
| $t_5$                 | 60               | 60K     | 0                   |

Table: D<sup>om</sup>

Table: The expanded format of  $D^*$ 

- In the MG, every partially observed attribute will have three associated variables:
  - X\*: the available incomplete version of the partially observed variables.
  - $X^m$ : the unavailable complete version of  $X^*$
  - $R_X$ : an indicator that takes 0 and 1 as values, where  $X^m = X^*$  when  $R_X = 0$

Missingness graph

- MGs are employed to depict the stochastic dependencies among the variables, particularly concerning MVs.
- It represents dependencies between the variables.
- It models the messingness mechanism.



Let G(V,E) be the causal DAG where V =  $V^o \cup V^m \cup V^* \cup R$ 

- V<sup>o</sup>: the set of variables that are observed in all records.
- The variables that indicates missing values in the database is denoted  $X^*$  (proxy variable).
- $X^m$  represents the unobserved complete version of  $X^*$ .
- $R^X$  are the indicator variables, taking values 0 or 1, where each  $x^m$  is associated with an indicator variable.

$$egin{array}{ll} v_i^* = f(r_{v_i},v_i) = egin{cases} v_i & ext{ if } r_{v_i} = 0 \ na & ext{ if } r_{v_i} = 1 \end{array} \end{array}$$

Missingess graph and missingness mechanism

- We can represent the missingness mechanism by utilizing variable dependencies within the m-graph
- Missing Completely At Random (MCAR): if  $(V^m \cup V^o \perp R)$ .
- Missing At Random (MAR): if  $(V^m \perp \!\!\!\perp R | V^o)$ .
- Missing Not At Random (MNAR): Data that are not MAR or MCAR fall under the MNAR category.



Missingness graph

The m-graph is viewed as a Bayesian network, capturing absolute and conditional probabilities of variables.



M.I DAOUADI - F. TOUMANI

April 11, 2024

### Definitions (preliminaries) Probabilistic database (PDB)

- Data: Traditional relational data coupled with probabilities quantifying the level of uncertainty.
- Queries: standard SQL queries, whose answers are annotated with output probabilities

#### Definition

A probabilistic database is a probability space D = (W, P) where W is the set of possible worlds (the set of the possible database instances) and P is a probability over W.

Block independent disjoint probabilistic database (BIPDB)

 $\Rightarrow$  Motivation: Given the impracticality of enumerating all potential worlds, there is a necessity for an optimized representation.

| employee       | Age <sup>o</sup> | Salary <sup>m</sup> | р       |
|----------------|------------------|---------------------|---------|
| $t_1$          | 25               | 20K                 | 1       |
|                |                  | 20K                 | $p_2^1$ |
| t2             | 48               |                     |         |
|                |                  | 90K                 | $p_2^k$ |
| t <sub>3</sub> | 39               | 55K                 | 1       |
|                |                  | 20                  | $p_4^1$ |
| $t_4$          | 41               |                     |         |
|                |                  | 90K                 | $P_4^k$ |
| t5             | 60               | 60K                 | 1       |

Table: Example of BIPDB

- Tuples from the same block are disjoint.
- Tuples from different blocks are independent.

Block independent disjoint probabilistic database (BIPDB)

#### Definition

A *block* is a probability space (B, P) where B the *domain* of the block is a set of tuples sharing the same identifier. This value is called the identifier of the block.

A Block-Independent Probabilistic Database (BIPDB) is a set of blocks with different identifiers. We can see a BIPDB  $\{(B_i, P_i) \mid 1 \le i \le n\}$  as a probabilistic database space (W, P), where:

• 
$$W = \left\{ \bigcup_{j=1}^n \{t_j\} \mid (t_1, \ldots, t_n) \in \prod_{i=1}^n B_i \right\}$$

• 
$$\forall w = \{t_1, \ldots, t_n\} \in W, \ P(w) = \prod_{i=1}^n P_i(t_i)$$

E ► E ✓.

### Problem formulation

Given:

- an incomplete database D\*
- an qualitative MG
- a scalar aggregate query Q
- $\Rightarrow$  How can we build a BID?
- $\Rightarrow$  How can we use the BID for imputation?

The process of building BIPDB



Figure: The m-graph

| Person <sup>+</sup> | pet <sup>o</sup> | gender <sup>o</sup> | nKids* | R <sup>nKids</sup> |
|---------------------|------------------|---------------------|--------|--------------------|
| $t_1$               | у                | M                   | 0      | 0                  |
| t <sub>2</sub>      | у                | М                   | 0      | 0                  |
| t <sub>3</sub>      | У                | F                   | na     | 1                  |
| t <sub>4</sub>      | у                | F                   | 0      | 0                  |
| t5                  | у                | F                   | na     | 1                  |
| t <sub>6</sub>      | у                | F                   | 1      | 0                  |
| t7                  | У                | F                   | na     | 1                  |
| t <sub>8</sub>      | у                | F                   | 2      | 0                  |

Figure: The expanded schema instance  $D^+$ 

| erson*         | pet | gender | nKids* |
|----------------|-----|--------|--------|
| $t_1$          | у   | M      | 0      |
| $t_2$          | У   | M      | 0      |
| t3             | у   | F      | na     |
| t <sub>4</sub> | у   | F      | 0      |
| $t_5$          | у   | F      | na     |
| t <sub>6</sub> | У   | F      | 1      |
| t <sub>7</sub> | У   | F      | na     |
| t <sub>8</sub> | y   | F      | 2      |

Р

Figure: The observed database  $D^*$ 

 We have the probabilities: P(pet<sup>o</sup>), P(gender<sup>o</sup>), P(nKids<sup>m</sup>), P(Rnkids | gender<sup>o</sup>), P(nKids<sup>\*</sup> | R<sub>nKids</sub>, nkids<sup>m</sup>)

M.I DAOUADI - F. TOUMANI

The process of building BIPDB

• Given the domains of *pet<sup>o</sup>*, *gender<sup>o</sup>*, *nKids<sup>m</sup>*, such that:

 $dom(pet^{o}) = \{y, n\}, dom(gender^{o}) = \{M, F\}, dom(nKids^{m}) = \{0, 1, 2\}$ 

• For each tuple  $t \in D^*$  we build a block  $B_t$ 

• 
$$B_t = X_{C \in Sort(D^*)} V_C^t$$
, where  $V_C^t = \begin{cases} dom(C), & \text{if } t[C] = na \\ \{t[C]\}, & \text{otherwise} \end{cases}$   
• E.g: tuple  $t_1 = (y, M, 0)$ ;  $B_{t_1} = \{y\}x\{M\}x\{0\} = \{(y, M, 0)\}$   
• E.g: tuple  $t_3 = (y, F, na)$ ;  
 $B_{t_3} = \{y\}x\{F\}x\{0, 1, 2\} = \{(y, F, 0), (y, F, 1), (y, F, 2)\}$ 

The process of building the BIPDB

| BID            | pet <sup>o</sup> | gender <sup>o</sup> | nKids <sup>m</sup> | P                     |
|----------------|------------------|---------------------|--------------------|-----------------------|
| $B_1$          | у                | М                   | 0                  | <i>P</i> 1            |
| B <sub>2</sub> | у                | М                   | 0                  | <b>p</b> <sub>2</sub> |
|                | у                | F                   | 0                  | $p_3^1$               |
| B <sub>3</sub> | y                | F                   | 1                  | $p_3^2$               |
|                | y                | F                   | 2                  | $p_3^3$               |
| $B_4$          | у                | F                   | 0                  | <i>P</i> <sub>4</sub> |
|                | у                | F                   | 0                  | $p_5^1$               |
| $B_5$          | y                | F                   | 1                  | $p_{5}^{2}$           |
|                | у                | F                   | 2                  | P5                    |
| B <sub>6</sub> | у                | F                   | 1                  | P6                    |
| t <sub>7</sub> | у                | F                   | 0                  | $p_7^1$               |
|                | y                | F                   | 1                  | $p_{7}^{2}$           |
|                | y                | F                   | 2                  | $p_{7}^{3}$           |
| B <sub>8</sub> | v                | F                   | 2                  | <i>p</i> 8            |

Figure: Initial BIPDB

- If  $|B_t| = 1$ , then p(t) = 1.
- else: for all  $\hat{t} \in B_t$

• 
$$P(\hat{t}) = P(nKids^m = \hat{t}[nKids^m] | gender^o = \hat{t}[gender^o], pet^o = \hat{t}[pet^o], nKids^* = na)$$

The process of building the BIPDB

| bid            | pet <sup>o</sup> | gender <sup>o</sup> | nKids <sup>m</sup> | Р    |
|----------------|------------------|---------------------|--------------------|------|
| $B_1$          | у                | М                   | 0                  | 1    |
| $B_2$          | у                | М                   | 0                  | 1    |
|                | у                | F                   | 0                  | 0.5  |
| $B_3$          | у                | F                   | 1                  | 0.25 |
|                | у                | F                   | 2                  | 0.25 |
| $B_4$          | у                | F                   | 0                  | 1    |
|                | у                | F                   | 0                  | 0.5  |
| $B_5$          | y                | F                   | 1                  | 0.25 |
|                | у                | F                   | 2                  | 0.25 |
| B <sub>6</sub> | у                | F                   | 1                  | 1    |
| t <sub>7</sub> | у                | F                   | 0                  | 0.5  |
|                | y                | F                   | 1                  | 0.25 |
|                | y                | F                   | 2                  | 0.25 |
| B <sub>8</sub> | у                | F                   | 2                  | 1    |

peto gender<sup>o</sup> nKids<sup>n</sup> Μ 0 v Μ 0 у F 0 v F 0 у F У 1 F у 1 F 2 v F 2 ٧

Table: A possible world I; P(I) =  $0.5 \times 0.25 \times 0.25$ 

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Figure: Final BIPDB

#### Definition

In a probabilistic database (W, P), classes are defined as a partition of possible worlds using an equivalence relation, where two  $w_i \sim w_j$  iff:  $P_{w_i}(X^m \cup X^o) = P_{w_j}(X^m \cup X^o)$  where  $P_{w_i}$  is the empirical distribution. The probability of a class C is defined as  $\sum_{w \in C} P(w)$ .

- For query Q, worlds within the same class share a common QA.
- We want to evaluate our query on the class or classes with the highest probability in the BIPDB.
- Our intuition is that the most probable class will have the closest distribution to the one defined by the MG.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のくで

• Identical blocks are grouped into the same super-blocks.

### Definition

A BIPDB *D* is *balanced* if for each *S* superblock in *D*,  $(B, P) \in S$  and  $t \in B$ ,  $P(t) \times |S|$  is an integer.

### Proof:

- The set of superblocks in D is  $\{S_1, \ldots, S_l\}$ .
- Withing the superblock, the blocks share the same domain  $B = \{t_1, \ldots, t_m\}.$
- For each block  $(B, P_i)$  in  $S_i$  and tuple  $t_j \in B \exists$  integer  $u_{i,j}$  such that  $P_i(t_j) = \frac{u_{i,j}}{|S_i|}$

## • A class C is identified by $K_j$ (#occurence of $t_j$ in C) where $\sum_{1 \le j \le m} K_j = |D|$

の へ (~ 36/55

Proof of the Most probable class (MPC) in a balanced BIPDB

- $k_{i,j}$  is  $\#t_j$  coming from superblock  $S_i$  where  $k_j = \sum_{1 \le i \le l} k_{i,j}$
- for each  $1 \le i \le l$ ,  $\sum_{1 \le j \le m} k_{i,j} = |S_i|$

The probability of a class is obtained by the product of multinomial laws in each superblock:

$$\prod_{1 \le i \le l} \binom{|S_i|}{k_{i,1}} \binom{u_{i,1}}{|S_i|}^{k_{i,1}} \binom{|S_i| - k_{i,1}}{k_{i,2}} \binom{u_{i,2}}{|S_i|}^{k_{i,2}} \dots \binom{|S_i| - k_{i,1} \dots - k_{i,m-1}}{k_{i,m}} \binom{u_{i,m}}{|S_i|}^{k_{i,m}}$$

simplified as follow:

$$\frac{|S_1|!...|S_l|!}{|S_1|!...|S_l|^{|S_l|}} \prod_{1 \le i \le l} \prod_{1 \le j \le m} \frac{u_{i,j}^{k_{i,j}}}{k_{i,j}!}$$

• To find the MPC we maximize for each fixed i, j the  $k_{i,j}$  maximizing  $\frac{u_{i,j}^{k_{i,j}}}{k_{i,i}!}$ 

Proof of the Most Probable Class (MPC) in a balanced BIPDB

$$\frac{u_{i,j}^{k_{i,j}}}{k_{i,j}!} = \frac{u_{i,j}}{1} \times \frac{u_{i,j}}{2} \times \cdots \times \frac{u_{i,j}}{k_{i,j}}$$

- The maximum is reached when  $k_{i,j} = u_{i,j} 1$  or  $k_{i,j} = u_{i,j}$
- However; considering the constraints  $1 \le i \le l$ ,  $\sum_{1 \le j \le m} k_{i,j} = |S_i|$  will leave us with only one choice  $k_{i,j} = u_{i,j}$
- With  $k_{i,j}$  values, we can impute missing values.

#### Detailed example

| bid            | pet <sup>o</sup> | gender <sup>o</sup> | nKids <sup>m</sup> | Р   |
|----------------|------------------|---------------------|--------------------|-----|
| $B_1$          | у                | М                   | 0                  | 1   |
| $B_2$          | у                | М                   | 0                  | 1   |
|                | У                | F                   | 0                  | 2/4 |
| $B_3$          | у                | F                   | 1                  | 1/4 |
|                | у                | F                   | 2                  | 1/4 |
|                | у                | F                   | 0                  | 2/4 |
| $B_4$          | у                | F                   | 1                  | 1/4 |
|                | у                | F                   | 2                  | 1/4 |
|                | у                | F                   | 0                  | 2/4 |
| $B_5$          | у                | F                   | 1                  | 1/4 |
|                | у                | F                   | 2                  | 1/4 |
| B <sub>6</sub> | у                | F                   | 1                  | 1   |
| t <sub>7</sub> | У                | F                   | 0                  | 2/4 |
|                | у                | F                   | 1                  | 1/4 |
|                | у                | F                   | 2                  | 1/4 |
| B <sub>8</sub> | у                | F                   | 2                  | 1   |

Figure: BIPDB

•  $S_1 = \{B_3, B_4, B_5, B_7\}$ 

• 
$$|S_1| = 4$$

•  $k_{1,1} + k_{1,2} + k_{1,3} = 4$ 

• 
$$u_{1,1} = \frac{2}{4}, u_{1,2} = \frac{1}{4}, u_{1,3} = \frac{1}{4}$$

• The equivalent values of  $k_{1,i}$  to find MPC:

• 
$$k_{1,1} = u_{1,1} = 2$$

• 
$$k_{1,2} = u_{1,2} = 1$$

•  $k_{1,3} = u_{1,3} = 1$ 

イロト イヨト イヨト イヨト

#### Detailed example

| Person         | pet <sup>o</sup> | gender <sup>o</sup> | nKids <sup>m</sup> |
|----------------|------------------|---------------------|--------------------|
| t1             | у                | M                   | 0                  |
| t2             | У                | M                   | 0                  |
| t3             | у                | F                   | 0                  |
| t4             | у                | F                   | 0                  |
| t5             | У                | F                   | 1                  |
| t <sub>6</sub> | у                | F                   | 1                  |
| t7             | У                | F                   | 2                  |
| t <sub>8</sub> | у                | F                   | 2                  |

Table: A world from the MPC

40/55

• Identical blocks are grouped into the same super-blocks.

### Definition

A BIPDB *D* is *unbalanced* if  $\exists$  superblock  $S_i$  in *D*,  $(B, P_i) \in S_i$  and  $t \in B$ ,  $P_i(t) \times |S_i|$  is not an integer.

### **Proof:**

- The set of superblocks in D is  $\{S_1, \ldots, S_l\}$ .
- Withing the superblock, the blocks share the same domain  $B = \{t_1, \ldots, t_m\}.$
- For each block  $(B, P_i)$  in  $S_i$  and tuple  $t_j \in B \exists$  integer  $u_{i,j}$  such that  $P_i(t_j) = \frac{u_{i,j}}{\hat{s}_i}$
- A class C is identified by  $K_j$  (#occurence of  $t_j$  in C) where  $\sum_{1 \le j \le m} K_j = |D|$

のへで 41/55

Proof of the Most probable class (MPC) in an unbalanced BIPDB

- $k_{i,j}$  is  $\#t_j$  coming from superblock  $S_i$  where  $k_j = \sum_{1 \le i \le l} k_{i,j}$
- for each  $1 \leq i \leq l$ ,  $\sum_{1 \leq j \leq m} k_{i,j} = |S_i|$

The probability of a class is obtained by the product of multinomial laws in each superblock:

$$\prod_{1 \le i \le l} \binom{|S_i|}{k_{i,1}} \left(\frac{u_{i,1}}{\hat{s}_i}\right)^{k_{i,1}} \binom{|S_i| - k_{i,1}}{k_{i,2}} \left(\frac{u_{i,2}}{\hat{s}_i}\right)^{k_{i,2}} \dots \binom{|S_i| - k_{i,1} \dots - k_{i,m-1}}{k_{i,m}} \left(\frac{u_{i,m}}{\hat{s}_i}\right)^{k_{i,m}}$$

simplified as follow:

$$\frac{|S_{1}|!...|S_{l}|!}{\hat{s}_{1}^{|S_{1}|}...\hat{s}_{l}^{|S_{l}|}}\prod_{1\leq i\leq l}\prod_{1\leq j\leq m}\frac{u_{i,j}^{\kappa_{i,j}}}{k_{i,j}!}$$

• To find the MPC we maximize for each fixed i, j the  $k_{i,j}$  maximizing  $\frac{u_{i,j}^{k_{i,j}}}{k_{i,j}!}$ 

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ 42/55

Proof of the Most Probable Class (MPC) in an unbalanced BIPDB

$$\frac{u_{i,j}^{k_{i,j}}}{k_{i,j}!} = \frac{u_{i,j}}{1} \times \frac{u_{i,j}}{2} \times \cdots \times \frac{u_{i,j}}{k_{i,j}}$$

- The maximum is reached when  $k_{i,j} = u_{i,j} 1$  or  $k_{i,j} = u_{i,j}$
- We randomly select one of the most probable classes and designate an instance from it to represent the final imputation in our database.

Comparative study

- The k-Nearest Neighbors (KNN) imputation (sckit learn).
- Predictive Mean Matching (PMM) imputation (MICE package).
- Classification and Regression Trees (CART) imputation (MICE package).
- Mode imputation (sckit learn).

Starting from a complete database, introduce missing values for different missingness mechanism and under different missingness rate.

### Problem statement Evaluation of Imputation Technique

• Wasserstein Distance:

$$W_p(P,Q) = \left(\inf_{\pi \in \Gamma(P,Q)} \int_{R^d \times R^d} \|X - Y\|^p \, d\pi\right)^{1/p}$$

- $\Gamma(P,Q)$  is the set of all joint probability measures on  $R^d \times R^d$  whose marginals are P,Q
- The Kullback-Leibler Divergence (KL Divergence):

$$D_{KL}(P \parallel Q) = \sum_{i} P(i) \cdot \log\left(\frac{P(i)}{Q(i)}\right)$$

MCAR example

miss rate = 0.1



Figure: comparing the distribution for all competitors

46/55

MCAR example

miss rate = 0.3



Figure: comparing the distribution for all competitors

47/55

• • • • • • • • • • •

MCAR example

miss rate = 0.5



Figure: comparing the distribution for all competitors

48/55

э.

• • • • • • • • • • •

MNAR example

miss rate = 0.1



Figure: comparing the distribution for all competitors

49/55

• • • • • • • • • • •

MNAR example

miss rate = 0.3



Figure: comparing the distribution for all competitors

50/55

MNAR example

miss rate = 0.5



Figure: comparing the distribution for all competitors

イロト イヨト イヨト イヨト

## Perspective and future work

∃ >

- Relaxation of the assumption:
  - What if we consider having only qualitative m-graph (no probabilities)?
  - $\Rightarrow$  [3] consistently recover the joint/conditional distribution for given m-graph.
    - Building a BID will depend on the recovered JD (ongoing work).
- Compre the QAs provided by the new imputed database with the most probable answer in the context of the probabilistic database.

### References I



#### Leonid Libkin.

Sql's three-valued logic and certain answers. *ACM Trans. Database Syst.*, 41(1), mar 2016.

R. J Little.

Regression with missing x's: a review.

Journal of the American Statistical Association, 87, pages 1227–1237, 1992.

- Karthika Mohan and Judea Pearl.
   Graphical models for processing missing data.
   Journal of the American Statistical Association, 116, 01 2018.
- Karthika Mohan and Judea Pearl.
   Graphical models for processing missing data.
   Journal of the American Statistical Association, 116, 01 2018.

### References II



#### Donald Rubin.

Inference and missing data. pages 581–592, 1976.

A (1) < A (1) </p>