
© 2024 Nokia1

Some algorithmic problems
related to the Autonomous
Mobile Robot Orchestrator

Lou Salaün, AI Research Lab, Nokia Bell Labs, France

LIMOS Seminar, 4 April 2024

© 2024 Nokia2

Self-introduction

• PhD thesis on resource allocation in wireless networks [Salaün2020]

• Collaboration with Pierre Bergé on the Canadian Traveller Problem [Bergé2023]

• My recent work at Nokia:

• Radio resource allocation in future wireless networks:

• Graph neural network [Salaün2022], deep reinforcement learning, online graph matching

• Continuous and discrete optimization algorithms

• Industrial robotics:

• Collision detection and avoidance for black-box robots [Ayoubi2024]

• Trajectory prediction: recurrent neural network, Markov model

• Multi-agent path finding

© 2024 Nokia3

Self-introduction

• PhD thesis on resource allocation in wireless networks [Salaün2020]

• Collaboration with Pierre Bergé on the Canadian Traveller Problem [Bergé2023]

• My recent work at Nokia:

• Radio resource allocation in future wireless networks:

• Graph neural network [Salaün2022], deep reinforcement learning, online graph matching

• Continuous and discrete optimization algorithms

• Industrial robotics:

• Collision detection and avoidance for black-box robots [Ayoubi2024]

• Trajectory prediction: recurrent neural network, Markov model

• Multi-agent path finding

Scope of this
presentation

© 2024 Nokia4

Autonomous Mobile Robot Orchestrator (AMRO)

Objective: sense, orchestrate and control

Environment: robotics factory with multi-vendor mobile cognitive robots

• Agents controlled by AMRO:

• AMR: Autonomous Mobile Robots (free-space mobile robot)

• Agents non-controlled by AMRO:

• AGV: Automated Guided Vehicle (line-following robot)

• AMR

• Humans, forklifts, etc..

Source:

Cloud-enhanced cognitive robotics, Nokia Bell Labs blog post, 21 November 2023

Commanding robots from the edge, Nokia Bell Labs blog post, 13 October 2022

https://www.bell-labs.com/research-innovation/projects-and-initiatives/cloud-enhanced-cognitive-robotics/
https://www.bell-labs.com/institute/blog/commanding-robots-from-the-edge/

© 2024 Nokia5

Autonomous Mobile Robot Orchestrator (AMRO)

© 2024 Nokia6

Outline

▪ Collision Detection and Avoidance for Black
Box Multi-Robot Navigation (CODAK)

▪ Multi-Agent Path Finding (MAPF)

▪ AGV Trajectory Prediction

Local planning

Global planning

Dynamic obstacle avoidance in
global planning

© 2024 Nokia7

CODAK
Introduction

CODAK: Collision Detection and Avoidance for Black Box Multi-Robot Navigation

Assumptions:

• Fleet of commercial industrial robots from different vendors

• Heterogeneous

• Black-box

• Shared communication channel

• Simple interface with the following actions:

© 2024 Nokia8

CODAK
Introduction

CODAK: Collision Detection and Avoidance for Black Box Multi-Robot Navigation

Assumptions:

• Fleet of commercial industrial robots from different vendors

• Heterogeneous

• Black-box

• Shared communication channel

• Simple interface with the following actions:

1. Set a goal

1

© 2024 Nokia9

CODAK
Introduction

CODAK: Collision Detection and Avoidance for Black Box Multi-Robot Navigation

Assumptions:

• Fleet of commercial industrial robots from different vendors

• Heterogeneous

• Black-box

• Shared communication channel

• Simple interface with the following actions:

1. Set a goal

2. Monitor the robot movement and plan

1

2

© 2024 Nokia10

CODAK
Introduction

CODAK: Collision Detection and Avoidance for Black Box Multi-Robot Navigation

Assumptions:

• Fleet of commercial industrial robots from different vendors

• Heterogeneous

• Black-box

• Shared communication channel

• Simple interface with the following actions:

1. Set a goal

2. Monitor the robot movement and plan

3. Cancel a goal

3

© 2024 Nokia11

CODAK
Introduction

CODAK: Collision Detection and Avoidance for Black Box Multi-Robot Navigation

Assumptions:

• Fleet of commercial industrial robots from different vendors

• Heterogeneous

• Black-box

• Shared communication channel

• Simple interface with the following actions:

1. Set a goal

2. Monitor the robot movement and plan

3. Cancel a goal

4. Pull the handbrake

4

3

© 2024 Nokia12

CODAK
Software system overview

• Navigation stack is hidden

• Shared information:

• p: position

• v: velocity

• W: plan (sequence of waypoints)

• Pre-assigned priority order

© 2024 Nokia13

CODAK
Method overview

Fig. Robot’s plan at 𝑡 = 0 𝑠

Fig. Collision predicted at 𝑡 = 4 𝑠

Each robot:

▪ Moves autonomously

▪ Communicates its intent (plan)

▪ Listen to others’ plans

▪ Predict trajectories to estimate collision probability

▪ If collision is detected with a higher priority robot, run:

© 2024 Nokia14

CODAK
Recurrent neural network trajectory prediction

Fig. Trajectory prediction using RNN

𝒕𝟏

𝒕𝟐

𝒕𝟑

𝒕𝟒

𝒕𝟓

𝒕𝟔

RNN

Input:
• Current state: position,

orientation and velocity
• Robot intent: plan
• Local/global view (optional)

Prediction:
• Position and velocity

distributions over time

© 2024 Nokia15

CODAK
Recurrent neural network trajectory prediction

Input: Initial state
𝑥, 𝑦, 𝜃, 𝑣, 𝑤, 𝑡

Sequence of
waypoints (plan)

𝑤𝑖 0 ⋯ 𝑤𝑖(𝑁)

Output: Sequence of predicted states 𝑦𝑖
′ 1 ⋯ 𝑦𝑖

′ 𝑁 .

Each state 𝑦𝑖
′ 𝑘 ~𝒩 ෥𝝁𝑖 𝑘 , 𝚺𝑖 𝑘 .

Fig. RNN structure for robot 𝑖

© 2024 Nokia16

CODAK
Recurrent neural network trajectory prediction

Input: Initial state
𝑥, 𝑦, 𝜃, 𝑣, 𝑤, 𝑡

Sequence of
waypoints (plan)

𝑤𝑖 0 ⋯ 𝑤𝑖(𝑁)

Output: Sequence of predicted states 𝑦𝑖
′ 1 ⋯ 𝑦𝑖

′ 𝑁 .

Each state 𝑦𝑖
′ 𝑘 ~𝒩 ෥𝝁𝑖 𝑘 , 𝚺𝑖 𝑘 .

Fig. RNN structure for robot 𝑖

Bidirectional RNN Encoder
Intent 𝑾𝑖 ⟶ internal repr. 𝑯𝑖

© 2024 Nokia17

CODAK
Recurrent neural network trajectory prediction

Input: Initial state
𝑥, 𝑦, 𝜃, 𝑣, 𝑤, 𝑡

Sequence of
waypoints (plan)

𝑤𝑖 0 ⋯ 𝑤𝑖(𝑁)

Output: Sequence of predicted states 𝑦𝑖
′ 1 ⋯ 𝑦𝑖

′ 𝑁 .

Each state 𝑦𝑖
′ 𝑘 ~𝒩 ෥𝝁𝑖 𝑘 , 𝚺𝑖 𝑘 .

Fig. RNN structure for robot 𝑖

Bidirectional RNN Encoder
Intent 𝑾𝑖 ⟶ internal repr. 𝑯𝑖

Optional “contextual” input:
static map, costmap

© 2024 Nokia18

CODAK
Recurrent neural network trajectory prediction

Input: Initial state
𝑥, 𝑦, 𝜃, 𝑣, 𝑤, 𝑡

Sequence of
waypoints (plan)

𝑤𝑖 0 ⋯ 𝑤𝑖(𝑁)

Output: Sequence of predicted states 𝑦𝑖
′ 1 ⋯ 𝑦𝑖

′ 𝑁 .

Each state 𝑦𝑖
′ 𝑘 ~𝒩 ෥𝝁𝑖 𝑘 , 𝚺𝑖 𝑘 .

Fig. RNN structure for robot 𝑖

Mean Decoder with feedbacks
“predict average positions”

Previous state
yi

′ t − 1 , hi t
⇓

Next state yi
′ t

© 2024 Nokia19

CODAK
Recurrent neural network trajectory prediction

Input: Initial state
𝑥, 𝑦, 𝜃, 𝑣, 𝑤, 𝑡

Sequence of
waypoints (plan)

𝑤𝑖 0 ⋯ 𝑤𝑖(𝑁)

Output: Sequence of predicted states 𝑦𝑖
′ 1 ⋯ 𝑦𝑖

′ 𝑁 .

Each state 𝑦𝑖
′ 𝑘 ~𝒩 ෥𝝁𝑖 𝑘 , 𝚺𝑖 𝑘 .

Fig. RNN structure for robot 𝑖

Mean Decoder with feedbacks
“predict average positions”

Covariance Decoder with feedbacks
“estimate prediction uncertainty”

Previous state
yi

′ t − 1 , hi t
⇓

Next state yi
′ t

© 2024 Nokia20

CODAK
Recurrent neural network trajectory prediction

• The prediction should be invariant by:

• Translation: states and waypoints are encoded as displacements, e.g., 𝑑𝑥, 𝑑𝑦, 𝜃, 𝑣, 𝑤, 𝑑𝑡

• Rotation: augment training data with random rotations

• Mean-covariance training:

• First phase:

• Learn to predict the average positions “point-prediction”

• Train the encoder and mean decoder with 75% of the training data using mean square error loss

• Second phase:

• Learn to estimate the uncertainty “covariance prediction”

• Train the covariance decoder with 25% of the training data using Gaussian negative log likelihood loss

© 2024 Nokia21

CODAK
RNN performance

© 2024 Nokia22

CODAK
Experiments

© 2024 Nokia23

CODAK
Conclusion

• Avoid collision without access to the internal navigation stack

• Makespan comparable to the white-box solution NH-ORCA

• Our implementation is distributed (can also be centralized)

• Can find collision-free path but cannot avoid deadlocks

• Future work: deadlock resolution

• Requires a free-space global planner

• Robust to localization/sensor uncertainties

• As few communication rounds as possible (latency)

© 2024 Nokia24

Multi-Agent Path Finding
Problem definition

MAPF consists in finding the shortest collision-free path for each agent in a graph

Fig. An example on a grid

© 2024 Nokia25

Multi-Agent Path Finding
Problem definition

• 𝜋𝑖(𝑡): position (vertex) of robot 𝑖 at time 𝑡

• 𝑔𝑖: goal position (vertex) of robot 𝑖

• Constraints:

• Move along an edge: 𝜋𝑖 𝑡 , 𝜋𝑖 𝑡 + 1 ∈ 𝐸

• Vertex conflict: if 𝑖 ≠ 𝑗, then 𝜋𝑖 𝑡 ≠ 𝜋𝑗 𝑡

• Swapping conflict: if 𝑖 ≠ 𝑗, we cannot have 𝜋𝑖 𝑡 = 𝜋𝑗 𝑡 + 1 and 𝜋𝑖 𝑡 + 1 = 𝜋𝑗 𝑡

Fig. Swapping conflict
Source of the figures [Stern2019]

Fig. Vertex conflict

© 2024 Nokia26

Multi-Agent Path Finding
Problem definition

• Objective:

• MAPF: after some time 𝑇, for all robot 𝑖, 𝜋𝑖 𝑇 = 𝑔𝑖

• MAPD (multi-agent pickup and delivery): for all robot 𝑖, there is a timestep 𝑇𝑖 , 𝜋𝑖 𝑇𝑖 = 𝑔𝑖

• Metrics:

• Makespan: 𝑇

• Sum-of-costs: σ𝑖 𝑇𝑖, where 𝑇𝑖 is the earliest arrival time of robot 𝑖

© 2024 Nokia27

Multi-Agent Path Finding
Algorithms

A table made a few years ago:

© 2024 Nokia28

Multi-Agent Path Finding
Priority Inheritance with Backtracking (PIBT)

• Introduced by [Okumura2022]

• Low complexity heuristic

• Can easily scale to hundreds of agents

• Complete for MAPD problem if graph is biconnected

• We extend PIBT to free-space scenario

• How it works?

• Each agent follows a shortest path (e.g., Dijkstra, A*)

• In case of conflict:

• Priority inheritance

• Backtracking

© 2024 Nokia29

Multi-Agent Path Finding
Priority Inheritance

Fig. Example of priority inheritance (source [Okumura2022])

© 2024 Nokia30

Multi-Agent Path Finding
Priority Inheritance

Fig. Example of priority inheritance (source [Okumura2022])

Next steps…

© 2024 Nokia31

Multi-Agent Path Finding
Backtracking

Fig. Example of backtracking (source [Okumura2022])

wait wait

invalid

invalid

valid valid

valid

valid

© 2024 Nokia32

Multi-Agent Path Finding
Backtracking

Fig. Example of backtracking (source [Okumura2022])

wait wait

invalid

invalid

valid valid

valid

valid

© 2024 Nokia33

Multi-Agent Path Finding
Backtracking

Fig. Example of backtracking (source [Okumura2022])

wait wait

invalid

invalid

valid valid

valid

valid

© 2024 Nokia34

Multi-Agent Path Finding
Backtracking

Fig. Example of backtracking (source [Okumura2022])

wait wait

invalid

invalid

valid valid

valid

valid

© 2024 Nokia35

Free-Space PIBT
Problem definition

New rules:

• Agents can be of any size, can cover more than one node

• Agents can move on different graphs

• Conflict is given by a distance function, e.g., Euclidean: 𝑑 𝜋𝑖 𝑡 , 𝜋𝑗 𝑡 < 𝑟𝑖 + 𝑟𝑗

© 2024 Nokia36

Free-Space PIBT
Priority inheritance requires multiple steps

Fig. free-space priority inheritance requires multiple steps

© 2024 Nokia37

Free-Space PIBT
Priority inherited by multiple agents

Fig. classical priority inheritance Fig. free-space priority inheritance

© 2024 Nokia38

Free-Space PIBT
Backtracking search space is larger

Fig. free-space backtracking has more potential positions

© 2024 Nokia39

Free-Space PIBT
Preliminary solution

• 2022 Internship subject: C++ implementation

• Round agents (Euclidean distance)

• Square agents (Manhattan distance)

• We made arbitrary choices to handle the above 3 issues:

• Priority inheritance requires multiple steps ⟶ not an issue

• Pass the priority to multiple agents in arbitrary order

• We limit the max number of steps during backtracking

• The recursion depth can also be limited

• Impact on completeness?

© 2024 Nokia40

Free-Space PIBT
Open questions

• How to correctly handle these issues?

• Proof of completeness

• How to efficiently reduce the complexity in practice?

• Arbitrary shapes?

© 2024 Nokia41

AGV Trajectory Prediction
Heterogeneous continuous-time random walks (HCTRW)

• Automated Guided Vehicle (AGV):

• Line-following robot

• Black-box (do not communicate with the orchestrator)

• Noisy Localization from cameras and radio

• HCTRW [Grebenkov2018], Markov model with:

• Transition probabilities

• Transition time is a continuous random variable

• The prediction is used in MAPF solvers to avoid conflict AGVs:

• Consider AGVs as dynamic obstacles (space-time reservation)

• Compatible with most state-of-the-art algorithms

• Improve planning quality (faster mission completion)

𝑎

Transition time from 𝑎 to 𝑏: r.v. 𝑡𝑎,𝑏

Transition probability: 𝑝𝑎,𝑏

𝑏

𝑐

𝑡𝑎,𝑐, 𝑝𝑎,𝑐

© 2024 Nokia42

AGV Trajectory Prediction
HCTRW model learning pipeline

• Data:

• Positions and orientations of the AGVs over time

• Covariance (uncertainty of the localization)

• Noisy, localization can be wrong even with low-covariance

• Graph construction: based on expert knowledge

• Data preprocessing:

• Filter out high-uncertainty data and large time gaps

• Compute the most likely sequence of states given the noisy
observations (the AGV maximum velocity is known)

• Fit:

• Fit transition probabilities and times to common distributions
(e.g., expon, powerlaw, lognorm, uniform, etc.)

Fig. Constructed graph

© 2024 Nokia43

AGV Trajectory Prediction
HCTRW model learning pipeline

Video. An example of AGV localization data

© 2024 Nokia44

AGV Trajectory Prediction
HCTRW prediction

• Take as input the initial state of the robot

• Closed-form calculation:

• Laplace domain

• Only tractable for some distributions, e.g., exponential

• Monte Carlo sampling

© 2024 Nokia45

AGV Trajectory Prediction
HCTRW prediction

The predictions overlap between
rounds. Completely flat after 2-3
rounds.

Round 1

Round
2

Round
3

The prediction flattens / spreads out over
rounds

1h 2h 3h 4h

© 2024 Nokia46

Conclusion

• Feel free to ask questions!

• Credits:

• CODAK: Sara Ayoubi, Ilija Hadzic, Antonio Massaro

• LA-PIBT: Sara Ayoubi, Vladimir Kondratyev

• AGV prediction: Manuel Deneu, Antonio Massaro, Liubov Tupikina

© 2024 Nokia47

References

[Ayoubi2024] Sara Ayoubi, Ilija Hadzic, Lou Salaün and Antonio Massaro, “Collision detection and avoidance for black box
multi-robot navigation”, ICRA, 2024.

[Bergé2023] Pierre Bergé and Lou Salaün, “The influence of maximum (s, t)-cuts on the competitiveness of deterministic
strategies for the Canadian Traveller Problem”, Theoretical Computer Science, vol. 941, p. 221-240, 2023.

[Grebenkov2018] Denis S. Grebenkov and Liubov Tupikina, “Heterogeneous continuous-time random walks”, Physical
Review E, vol. 97, no 1, 2018.

[Okumura2022] Keisuke Okumura, Manao Machida, Xavier Défago, et al., “Priority inheritance with backtracking for
iterative multi-agent path finding”, Artificial Intelligence, vol. 310, p. 103752, 2022.

[Salaün2020] Lou Salaün, “Resource allocation and optimization for the non-orthogonal multiple access”, PhD thesis,
Institut polytechnique de Paris, 2020.

[Salaün2022] Lou Salaün, Hong Yang, Shashwat Mishra and Chung Shue Chen, “A GNN Approach for Cell-Free Massive
MIMO”, IEEE Globecom, 2022.

[Stern2019] Roni Stern, et al., “Multi-agent pathfinding: Definitions, variants, and benchmarks”, in Proceedings of the
International Symposium on Combinatorial Search, 2019.

https://doi.org/10.1016/j.tcs.2022.11.017
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.012148
https://doi.org/10.1016/j.artint.2022.103752
https://theses.hal.science/tel-02733385/
https://hal.science/hal-04443391

	Slide 1: Some algorithmic problems related to the Autonomous Mobile Robot Orchestrator
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

