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Self-introduction

• PhD thesis on resource allocation in wireless networks [Salaün2020]

• Collaboration with Pierre Bergé on the Canadian Traveller Problem [Bergé2023]

• My recent work at Nokia: 

• Radio resource allocation in future wireless networks:

• Graph neural network [Salaün2022], deep reinforcement learning, online graph matching 

• Continuous and discrete optimization algorithms

• Industrial robotics:

• Collision detection and avoidance for black-box robots [Ayoubi2024]

• Trajectory prediction: recurrent neural network, Markov model

• Multi-agent path finding
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Autonomous Mobile Robot Orchestrator (AMRO)

Objective: sense, orchestrate and control

Environment: robotics factory with multi-vendor mobile cognitive robots

• Agents controlled by AMRO:

• AMR: Autonomous Mobile Robots (free-space mobile robot)

• Agents non-controlled by AMRO: 

• AGV: Automated Guided Vehicle (line-following robot)

• AMR

• Humans, forklifts, etc..

Source:

Cloud-enhanced cognitive robotics, Nokia Bell Labs blog post, 21 November 2023

Commanding robots from the edge, Nokia Bell Labs blog post, 13 October 2022

https://www.bell-labs.com/research-innovation/projects-and-initiatives/cloud-enhanced-cognitive-robotics/
https://www.bell-labs.com/institute/blog/commanding-robots-from-the-edge/
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Autonomous Mobile Robot Orchestrator (AMRO)
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Outline

▪ Collision Detection and Avoidance for Black 
Box Multi-Robot Navigation (CODAK)

▪ Multi-Agent Path Finding (MAPF)

▪ AGV Trajectory Prediction

Local planning

Global planning

Dynamic obstacle avoidance in 
global planning
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CODAK
Introduction

CODAK: Collision Detection and Avoidance for Black Box Multi-Robot Navigation

Assumptions:

• Fleet of commercial industrial robots from different vendors

• Heterogeneous

• Black-box

• Shared communication channel

• Simple interface with the following actions:
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CODAK
Introduction

CODAK: Collision Detection and Avoidance for Black Box Multi-Robot Navigation

Assumptions:

• Fleet of commercial industrial robots from different vendors

• Heterogeneous

• Black-box

• Shared communication channel

• Simple interface with the following actions:

1. Set a goal

2. Monitor the robot movement and plan

3. Cancel a goal

4. Pull the handbrake

4

3



© 2024 Nokia12

CODAK
Software system overview

• Navigation stack is hidden

• Shared information:

• p: position

• v: velocity

• W: plan (sequence of waypoints)

• Pre-assigned priority order 
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CODAK
Method overview

Fig. Robot’s plan at 𝑡 = 0 𝑠

Fig. Collision predicted at 𝑡 = 4 𝑠 

Each robot:

▪ Moves autonomously

▪ Communicates its intent (plan)

▪ Listen to others’ plans

▪ Predict trajectories to estimate collision probability

▪ If collision is detected with a higher priority robot, run:
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CODAK
Recurrent neural network trajectory prediction 

Fig. Trajectory prediction using RNN

𝒕𝟏

𝒕𝟐

𝒕𝟑

𝒕𝟒

𝒕𝟓

𝒕𝟔

RNN

Input:
• Current state: position, 

orientation and velocity
• Robot intent: plan
• Local/global view (optional)

Prediction:
• Position and velocity 

distributions over time
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CODAK
Recurrent neural network trajectory prediction 

Input: Initial state
𝑥, 𝑦, 𝜃, 𝑣, 𝑤, 𝑡

Sequence of 
waypoints (plan)

𝑤𝑖 0 ⋯ 𝑤𝑖(𝑁)

Output: Sequence of predicted states 𝑦𝑖
′ 1 ⋯ 𝑦𝑖

′ 𝑁 .

Each state 𝑦𝑖
′ 𝑘 ~𝒩 ෥𝝁𝑖 𝑘 , 𝚺𝑖 𝑘 .

Fig. RNN structure for robot 𝑖
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Bidirectional RNN Encoder
Intent 𝑾𝑖  ⟶ internal repr. 𝑯𝑖
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Bidirectional RNN Encoder
Intent 𝑾𝑖  ⟶ internal repr. 𝑯𝑖

Optional “contextual” input:
static map, costmap 
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CODAK
Recurrent neural network trajectory prediction 
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Mean Decoder with feedbacks
“predict average positions”

Previous state 
yi

′ t − 1 , hi t
⇓

Next state yi
′ t
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CODAK
Recurrent neural network trajectory prediction 
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Fig. RNN structure for robot 𝑖

Mean Decoder with feedbacks
“predict average positions”

Covariance Decoder with feedbacks 
“estimate prediction uncertainty”

Previous state 
yi

′ t − 1 , hi t
⇓

Next state yi
′ t
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CODAK
Recurrent neural network trajectory prediction 

• The prediction should be invariant by:

• Translation: states and waypoints are encoded as displacements, e.g., 𝑑𝑥, 𝑑𝑦, 𝜃, 𝑣, 𝑤, 𝑑𝑡

• Rotation: augment training data with random rotations

• Mean-covariance training:

• First phase:

• Learn to predict the average positions “point-prediction”

• Train the encoder and mean decoder with 75% of the training data using mean square error loss

• Second phase:

• Learn to estimate the uncertainty “covariance prediction”

• Train the covariance decoder with 25% of the training data using Gaussian negative log likelihood loss
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CODAK
RNN performance
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CODAK
Experiments
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CODAK
Conclusion

• Avoid collision without access to the internal navigation stack

• Makespan comparable to the white-box solution NH-ORCA

• Our implementation is distributed (can also be centralized)

• Can find collision-free path but cannot avoid deadlocks

• Future work: deadlock resolution

• Requires a free-space global planner

• Robust to localization/sensor uncertainties

• As few communication rounds as possible (latency)
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Multi-Agent Path Finding
Problem definition

MAPF consists in finding the shortest collision-free path for each agent in a graph

Fig. An example on a grid
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Multi-Agent Path Finding
Problem definition

• 𝜋𝑖(𝑡): position (vertex) of robot 𝑖 at time 𝑡

• 𝑔𝑖: goal position (vertex) of robot 𝑖

• Constraints:

• Move along an edge: 𝜋𝑖 𝑡 , 𝜋𝑖 𝑡 + 1 ∈ 𝐸

• Vertex conflict: if 𝑖 ≠ 𝑗, then 𝜋𝑖 𝑡 ≠ 𝜋𝑗 𝑡

• Swapping conflict: if 𝑖 ≠ 𝑗, we cannot have 𝜋𝑖 𝑡 = 𝜋𝑗 𝑡 + 1 and 𝜋𝑖 𝑡 + 1 = 𝜋𝑗 𝑡

Fig. Swapping conflict
Source of the figures [Stern2019]

Fig. Vertex conflict
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Multi-Agent Path Finding
Problem definition

• Objective:

• MAPF: after some time 𝑇, for all robot 𝑖, 𝜋𝑖 𝑇 = 𝑔𝑖

• MAPD (multi-agent pickup and delivery): for all robot 𝑖, there is a timestep 𝑇𝑖 , 𝜋𝑖 𝑇𝑖 = 𝑔𝑖

• Metrics:

• Makespan: 𝑇

• Sum-of-costs: σ𝑖 𝑇𝑖, where 𝑇𝑖 is the earliest arrival time of robot 𝑖
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Multi-Agent Path Finding
Algorithms

A table made a few years ago:
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Multi-Agent Path Finding
Priority Inheritance with Backtracking (PIBT)

• Introduced by [Okumura2022] 

• Low complexity heuristic

• Can easily scale to hundreds of agents

• Complete for MAPD problem if graph is biconnected

• We extend PIBT to free-space scenario

• How it works?

• Each agent follows a shortest path (e.g., Dijkstra, A*)

• In case of conflict:

• Priority inheritance

• Backtracking
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Multi-Agent Path Finding
Priority Inheritance

Fig. Example of priority inheritance (source [Okumura2022]) 
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Multi-Agent Path Finding
Priority Inheritance

Fig. Example of priority inheritance (source [Okumura2022]) 

Next steps…
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Multi-Agent Path Finding
Backtracking

Fig. Example of backtracking (source [Okumura2022]) 

wait wait

invalid

invalid

valid valid

valid

valid



© 2024 Nokia32

Multi-Agent Path Finding
Backtracking

Fig. Example of backtracking (source [Okumura2022]) 

wait wait

invalid
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valid valid

valid

valid
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Multi-Agent Path Finding
Backtracking

Fig. Example of backtracking (source [Okumura2022]) 

wait wait

invalid

invalid

valid valid

valid

valid
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Multi-Agent Path Finding
Backtracking

Fig. Example of backtracking (source [Okumura2022]) 

wait wait

invalid

invalid

valid valid

valid

valid
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Free-Space PIBT
Problem definition

New rules:

• Agents can be of any size, can cover more than one node

• Agents can move on different graphs

• Conflict is given by a distance function, e.g., Euclidean: 𝑑 𝜋𝑖 𝑡 , 𝜋𝑗 𝑡 < 𝑟𝑖 + 𝑟𝑗
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Free-Space PIBT
Priority inheritance requires multiple steps

Fig. free-space priority inheritance requires multiple steps
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Free-Space PIBT
Priority inherited by multiple agents

Fig. classical priority inheritance Fig. free-space priority inheritance
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Free-Space PIBT
Backtracking search space is larger

Fig. free-space backtracking has more potential positions
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Free-Space PIBT
Preliminary solution

• 2022 Internship subject: C++ implementation

• Round agents (Euclidean distance)

• Square agents (Manhattan distance)

• We made arbitrary choices to handle the above 3 issues:

• Priority inheritance requires multiple steps ⟶ not an issue

• Pass the priority to multiple agents in arbitrary order

• We limit the max number of steps during backtracking

• The recursion depth can also be limited

• Impact on completeness?
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Free-Space PIBT
Open questions

• How to correctly handle these issues?

• Proof of completeness

• How to efficiently reduce the complexity in practice?

• Arbitrary shapes?
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AGV Trajectory Prediction
Heterogeneous continuous-time random walks (HCTRW)

• Automated Guided Vehicle (AGV):

• Line-following robot

• Black-box (do not communicate with the orchestrator)

• Noisy Localization from cameras and radio

• HCTRW [Grebenkov2018], Markov model with:

• Transition probabilities

• Transition time is a continuous random variable

• The prediction is used in MAPF solvers to avoid conflict AGVs:

• Consider AGVs as dynamic obstacles (space-time reservation)

• Compatible with most state-of-the-art algorithms

• Improve planning quality (faster mission completion)

𝑎

Transition time from 𝑎 to 𝑏: r.v. 𝑡𝑎,𝑏

Transition probability: 𝑝𝑎,𝑏

𝑏

𝑐

𝑡𝑎,𝑐,  𝑝𝑎,𝑐



© 2024 Nokia42

AGV Trajectory Prediction
HCTRW model learning pipeline

• Data:

• Positions and orientations of the AGVs over time

• Covariance (uncertainty of the localization)

• Noisy, localization can be wrong even with low-covariance 

• Graph construction: based on expert knowledge

• Data preprocessing:

• Filter out high-uncertainty data and large time gaps

• Compute the most likely sequence of states given the noisy 
observations (the AGV maximum velocity is known)

• Fit:

• Fit transition probabilities and times to common distributions 
(e.g., expon, powerlaw, lognorm, uniform, etc.)

Fig. Constructed graph
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AGV Trajectory Prediction
HCTRW model learning pipeline

Video. An example of AGV localization data
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AGV Trajectory Prediction
HCTRW prediction

• Take as input the initial state of the robot 

• Closed-form calculation:

• Laplace domain

• Only tractable for some distributions, e.g., exponential

• Monte Carlo sampling
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AGV Trajectory Prediction
HCTRW prediction

The predictions overlap between 
rounds. Completely flat after 2-3 
rounds.

Round 1

Round 
2

Round 
3

The prediction flattens / spreads out over 
rounds

1h 2h 3h 4h
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Conclusion

• Feel free to ask questions!

• Credits:

• CODAK: Sara Ayoubi, Ilija Hadzic, Antonio Massaro

• LA-PIBT: Sara Ayoubi, Vladimir Kondratyev

• AGV prediction: Manuel Deneu, Antonio Massaro, Liubov Tupikina
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